Profil Indeks Pengembangan Ikatan-Silang Gelatin-Kitosan

Nursalam Hamzah, Muhammad Fadhlurrahman, Surya Ningsi, Haeria Haeria

Abstract


Gelatin ikan menjadi sumber alternatif gelatin halal, tetapi memiliki sifat mekanik dan kekuatan gel yang rendah. Ikat silang telah banyak digunakan pada modifikasi material, termasuk untuk membentuk kompleks gelatin-kitosan. Ikat silang dapat meningkatkan kemampuan sifat mekanik dan kekuatan gel. Fokus penelitian ini adalah mengamati karakteristik indeks pengembangan kompleks gelatin-kitosan yang diikat silang menggunakan glutaraldehid dan sukrosa teroksidasi dengan variasi konsentrasi. Penelitian dimulai dengan ekstraksi gelatin dari sisik ikan Bandeng menggunakan metode basa-asam. Gelatin sisik ikan Bandeng dan gelatin komersil kemudian digunakan sebagai sampel. Larutan gelatin, kitosan dan pengikat silang dicampurkan dan diinkubasi pada suhu 40oC selama selama 24 jam. Campuran kemudian dikeringkan pemanasan suhu 70oC sampai sampel kering. Sampel kemudian diuji indeks pengembangan dengan direndam dalam air selama 12 jam, volume pengembangan diamati tiap jam. Hasil yang diperoleh menunjukkan bahwa kompleks gelatin-kitosan dapat diikat metode ikat silang dengan glutaraldehid dan sukrosa teroksidasi yang ditunjukkan dengan perubahan nilai indeks pengembangan. Sukrosa teroksidasi dengan perbandingan sukrosa dan natrium periodat 1:3 menunjukkan nilai indeks pengembangan paling baik.


Full Text:

PDF

References


Aider, M. (2010). Chitosan application for active bio-based films productionand potential in the food industry: review. LWT Food Science Technology, 43, 837–842.

Benbettaïeb, N., Karbowiak, T., Brachais, C.-H., & Debeaufort, F. (2015). Coupling tyrosol, quercetin or ferulic acid and electron beam irradiation to cross-link chitosan–gelatin films: A structure–function approach. European Polymer Journal, 67, 113-127.

Bigi, A., Bracci, B., Cojazzi, G., Panzavolta, S., & Roveri, N. (1998). Drawn gelatin films with improved mechanical properties. Biomaterials, 19, 2335–2340.

Bigi, A., Cojazzi, G., Panzavolta, S., Rubini, K., & Roveri, N. (2001). Mechanical and thermal properties of gelatin films at different degrees of glutaraldehyde crosslinking. Biomaterials Volume 22 Issue 8, 763-768.

Cui, L., Jia, J., Guo, Y., Liu, Y., & Zhu, P. (2014). Preparation and characterization of IPN hydrogels composed of chitosan and gelatin cross-linked by genipin. Carbohydrate Polymers Volume 99, 31-38.

Direktorat Produksi dan Usaha Budidaya. (2016). Peta Sentra Produksi Perikanan Budidaya. Kementerian Kelautan dan Perikanan Republik Indonesia.

Dragusin, D. M., Vlierberghe, S. V., Dubruel, P., Dierick, M., Hoorebeke, L. V., Declercq, H. A., . . . Stancu, I. C. (2012). Novel gelatin-PHEMA porous scaffolds for tissue engineering applications. Soft Matter, 8(37), 9589-9602.

El-Feky, G. S., Zayed, G. M., Elshaier, Y. A., & Alsharif, F. M. (2018). Chitosan-Gelatin Hydrogel Crosslinked With Oxidized Sucrose for the Ocular Delivery of Timolol Maleate. Journal of Pharmaceutical Sciences Volume 107 Issue 12, 3098-3104.

Erizal, Perkasa, D. P., Abbas, B., & S., S. G. (2013). Sintesis Kopolimer Ikatan Silang Gelatin Sisik Ikan-Kitosan Menggunakan Iradiasi Gamma. Jurnal Ilmiah Aplikasi Isotop dan Radiasi Vol. 9 No. 2, 101-112.

Farris, S., Song, J., & Huang, Q. (2010). Alternative reaction mechanism for thecross-linking of gelatin with glutaraldehyde. J Agric Food Chem, 58, 998–1003.

Hamzah, N., Nurmi, Mukhriani, & Ismail, A. (2019). Karakter Indeks Pengembangan Gelatin Taut Silang dengan Sukrosa Teroksidasi dan Glutaraldehid. ad-Dawaa' : Journal of Pharmaceutical Sciences (DJPS), 2(1), 22-28.

Hoque, M., Benjakul, S., & Prodpran, T. (2011). Properties of film from cuttlefish(Sepia pharaonis) skin gelatin incorporated with cinnamon, clove andstar anise extracts. Food Hydrocolloids, 25, 1085–1097.

Hosseini, S. F., Rezaei, M., Zandi, M., & Ghavi, F. F. (2013). Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chemistry Volume 136 Issue 3-4, 1490-1495.

Huang, T., Tu, Z.-c., Shangguan, X., Sha, X., Wang, H., Zhang, L., & Bansal, N. (2019). Fish gelatin modifications: A comprehensive review. Trends in Food Science & Technology Volume 86, 260-269.

Huang, X., Zhang, Y. Q., Zhang, X. M., Xu, L., Chen, X., & Wei, S. C. (2013). Influence of radiation crosslinked carboxymethyl-chitosan/gelatin hydrogel on cutaneous wound healing. Mater. Sci. Eng. C., 33(8), 4816-4824.

Jalaja, K., & James, N. R. (2015). Electrospun gelatin nanofibers: A facile cross-linking approach using oxidized sucrose. International Journal of Biological Macromolecules Volume 73, 270-278.

Jătariu (Cadinoiu), A. N., Danu, M., Peptu, C. A., Ioanid, G., Ibanescu, C., & Popa, M. (2013). Ionically and covalently cross-linked hydrogels based on gelatin and chitosan. Soft Mater, 11(1), 7616-7627.

Jătariu (Cadinoiu), A. N., Popa, M., Curteanu, S., & Peptu, C. A. (2011). Covalent and ionic co-cross-linking—an original way to prepare chitosan-gelatin hydrogels for biomedical applications. J. Biomed. Mater. Res. A., 98(3), 342-350.

Jayasuriya, A. C., & Kibbe, S. (2010). Rapid biomineralization of chitosan microparticles to apply in bone regeneration. J. Mater. Sci.: Mater. Med., 21(2), 393-398.

Koser, S. A., Chinn, B. D., & Saunders, F. (1938). Gelatin as a Source of Growth-Promoting Substances for Bacteria. J. Bacteriol, 36(1), 57-65.

Li, X., Ma, X. X., D., F. D., & Zhu, C. H. (2012). New suitable for tissue reconstruction injectable chitosan/collagen-based hydrogels. Soft Matter, 8(14), 3781-3790.

Mishra, D., Bhunia, B., Banerjee, I., Datta, P., Dhara, S., & K., M. T. (2011). Enzymatically crosslinked carboxymethyl-chitosan/gelatin/nano-hydroxyapatite injectable gels for in situ bone tissue engineering application. Mater. Sci. Eng. C., 31(7), 1295-1304.

Patel, S., Srivastava, S., Singh, M. R., & Singh, D. (2018). Preparation and optimization of chitosan-gelatin films for sustained delivery of lupeol for wound healing. International Journal of Biological Macromolecules Volume 107 Part B, 1888-1897.

Qian, Y., Zhang, K., Chen, F., Ke, Q., & Mo, X. (2011). Cross-linking of gelatin and chitosan complex nanofibers for tissue-engineering scaffolds. J Biomater Sci Polym Ed, 22(8), 1099-1113.

Qiao, C., Ma, X., Zhang, J., & Yao, J. (2017). Molecular interactions in gelatin/chitosan composite films. Food Chemistry Volume 235, 45-50.

Rivero, S., García, M., & Pinnoti, A. (2010). Correlations between structural, barrier, thermal and mechanical properties of plasticized gelatin films. Innovative Food Sci Emerging Technol, 11(2), 369–375.

Schrieber, R., & Gareis, H. (2007). Gelatine Handbook: Theory and Industrial Practice. Germany: Wiley-VCH.

Stancu, I. C., Lungu, A., Dragusin, D. M., Vasile, E., Damian, C., & Iovu, H. (2013). Porous Gelatin-Alginate-Polyacrylamide Scaffolds with Interpenetrating Network Structure: Synthesis and Characterization. Soft Mater., 11(4), 384-393.

Staroszczyk, H., Sztuka, K., Wolska, J., Wojtasz-Pająk, A., & Kołodziejska, I. (2014). Interactions of fish gelatin and chitosan in uncrosslinked and crosslinked with EDC films: FT-IR study. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy Volume 117, 707-712.

Tylingo, R., Gorczyca, G., Mania, S., Szweda, P., & Milewski, S. (2016). Preparation and characterization of porous scaffolds from chitosan-collagen-gelatin composite. Reactive and Functional Polymers Volume 103, 131-140.

Uranga, J., Puertas, A. I., Etxabide, A., Dueñas, M. T., Guerrero, P., & Caba, K. d. (2019). Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids Volume 86, 95-103.

Wang, Y. F., Hong, Q. F., Chen, Y. J., Lian, X. X., & Xiong, Y. F. (2012). Surface properties of polyurethanes modified by bioactive polysaccharide-based polyelectrolyte multilayers. Colloids Surf. B., 100, 77-83.

Wang, Y., Wang, Y., Guo, X., Xiong, Y., Guoa, M., & Wang, X. (2015). Microbial Transglutaminase and Tyrosinase Modified Gelatin-Chitosan Material. Soft Materials, 13(1), 32-38.

Wu, H. D., Ji, D. Y., Chang, W. J., Yang, J. C., & Lee, S. Y. (2012). Chitosan-based polyelectrolyte complex scaffolds with antibacterial properties for treating dental bone defects. Mater. Sci. Eng. C., 32(2), 207-214.




DOI: https://doi.org/10.24252/djps.v2i2.12147

Refbacks

  • There are currently no refbacks.




Indexed and Journal List Title by :