Al-Kimia

Pengaruh Karaginan dari Rumput Laut Merah (Eucheuma cottonii) Asal Provinsi Aceh sebagai Edible Coating terhadap Ketahanan Buah
Reni Silvia Nasution, Husnawati Yahya, Muhammad Ridwan Harahap

Synthesis of Cellulose Acetate-Polystyrene Membrane Composites from Pineapple Peel Wastes for Methylene Blue Removal
Irwan Maulana Firdaus, Febiyanto Febiyanto, Try Fitriany, Lely Zikri Zulhidayah, Dyah Ayu Septiarini, Oto Dwi Wibowo

Potensi Instrumen FTIR dan GC-MS dalam Mengkarakterisasi dan Membedakan Gelatin Lemak Ayam, Itik dan Babi
St Chadijah, Maswati Baharuddin, Firnanelty Firnanelty

Kajian Kinetika Pengaruh Lama Penyimpanan Terhadap Kadar Vitamin C Pada Buah Apel Malang (Malus Sylvestris)
Anjar Purba Asmara, Hanik Khuriana Amungkasi

Studi In Silico: Prediksi Potensi 6-shogaol dalam Zingiber officinalis sebagai Inhibitor JNK
Sri Sulystyaningsih Natalia Daeng Tiring, Yohanes Bare, Andri Maulidi, Mansur S, Fitra Arya Dwi Nugraha

Development of Novel Alumina by Solid-State Reaction for 99Mo/99mTc Adsorbent Material
Miftakul Munir, Enny Lestari, Hambali Hambali, Kadarisman Kadarisman, Marlina Marlina

Identifikasi Komponen Minyak Atsiri Daging Buah Pala (Myristica Fraghans Houtt.) Asal Pulau Lemukutan dan Uji Aktivitas Antiinflamasi Menggunakan Metode Stabilisasi Membran RBCs (Red Blood Cells)
Guntur Guntur, Harlia Harlia, Ajuk Sapar

Extraction, Isolation, Characterisation and Antioxidant Activity Assay of Catechin Gambir (Uncaria gambir (Hunter). Roxb
Edin Ningsih, Sri Rahayuningsih

Synthesis and Characterization of UiO-66 as a Paracetamol Absorption Material
Fery Eko Pujiono, Try Ana Mulyati

Pengaruh Konsentrasi Tembaga dan Rapat Arus terhadap Morfologi Endapan Elektrodepositi Tembaga
Soleh Wahyudi, Syoni Soepriyanto, Mohammad Zaki Mubarok, Sutarno Sutarno

Gum Benzoin (Styrax benzoin) as Antibacterial against Staphylococcus aureus
Asih Gayatri, Eti Rohaeti, Imanida Batubara

Jurusan Kimia UIN Alauddin Makassar
p-ISSN: 2302-2736
e-ISSN: 2549-9335
TABLE OF CONTENT

<table>
<thead>
<tr>
<th>Title</th>
<th>Authors</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pengaruh Karaginan dari Rumput Laut Merah (Eucheuma cottonii) Asal Provinsi Aceh sebagai Edible Coating terhadap Ketahanan Buah</td>
<td>Reni Silvia Nasution, Husnawati Yahya, Muhammad Ridwan Harahap</td>
<td>100-112</td>
</tr>
<tr>
<td>Synthesis of Cellulose Acetate-Polystyrene Membrane Composites from Pineapple Peel Wastes for Methylene Blue Removal</td>
<td>Irvan Maulana Firdaus, Febiyanto Febiyanto, Try Fitriany, Lely Zikri Zulhidayah, Dyah Ayu Septiari, Oto Dwi Wibowo</td>
<td>112-125</td>
</tr>
<tr>
<td>Potensi Instrumen FTIR dan GC-MS dalam Mengkarakterisasi dan Membedakan Gelatin Lemak Ayam, Itik dan Babi</td>
<td>St Chadijah, Maswati Baharuddin, Firmanely Firmanely</td>
<td>126-135</td>
</tr>
<tr>
<td>Studi In Silico: Prediksi Potensi 6-shogaol dalam Zingiber officinale sebagai Inhibitor JNK</td>
<td>Sri Sulystyaningsih Natalia Daeng Tiring, Yohanes Bare, Andri Maulidi,</td>
<td>147-153</td>
</tr>
<tr>
<td></td>
<td>Mansur S, Fitra Arya Dwi Nugraha</td>
<td></td>
</tr>
<tr>
<td>Development of Novel Alumina by Solid-State Reaction for 99Mo/99mTc Adsorbent Material</td>
<td>Miftakul Munir, Enny Lestari, Hambali Hambali, Kadarisman Kadarisman,</td>
<td>154-164</td>
</tr>
<tr>
<td></td>
<td>Marlina Marlin</td>
<td></td>
</tr>
<tr>
<td>Identifikasi Komponen Minyak Atsiri Daging Buah Pala (Myristica Fragrans Houtt.) Asal Pulau Lemukutan dan Uji Aktivitas Antiinflamasi Menggunakan Metode Stabilisasi Membran RBCs (Red Blood Cells)</td>
<td>Guntur Guntur, Harlia Harlia, Ajuk Sapar</td>
<td>165-176</td>
</tr>
<tr>
<td>Extraction, Isolation, Characterisation and Antioxidant Activity Assay of Catechin Gambir (Uncaria gambir (Hunter). Roxb</td>
<td>Edin Ningsih, Sri Rahayuningsih</td>
<td>177-188</td>
</tr>
<tr>
<td>Synthesis and Characterization of UiO-66 as a Paracetamol Absorption Material</td>
<td>Fery Eko Pujiono, Try Ana Mulyati</td>
<td>189-197</td>
</tr>
<tr>
<td>Pengaruh Konsentrasi Tembaga dan Rapat Arus terhadap Morfologi Endapan Elektrodeposisi Tembaga</td>
<td>Soleh Wahyudi, Syoni Soepriyanto, Mohammad Zaki Mubarak, Sutarno Sutarno</td>
<td>198-207</td>
</tr>
<tr>
<td>Gum Benzoin (Styrax benzoii) as Antibacterial against Staphylococcus aureus</td>
<td>Asih Gayatri, Eti Rohaeti, Irmanida Batubara</td>
<td>208-217</td>
</tr>
</tbody>
</table>
Development of Novel Alumina by Solid-State Reaction for 99Mo/99mTc Adsorbent Material

Miftakul Munir*, Enny Lestari, Hambali, Kadarisman, Marlina
Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency

Email: miftakul@batan.go.id

Received: July.17,2019 /Accepted:December.23,2019
doi: 10.24252/al-kimia.v7i2.9123

Abstract: Technetium-99m (99mTc), a daughter radionuclide of molybdenum-99 (99Mo), is the most widely used radiodiagnostic agent due to its ideal characteristics. The separation of this radionuclide from 99Mo is commonly performed using alumina. However, a new production method of this radionuclide, which employs a low specific activity 99Mo, makes alumina no longer suitable as separation material. This study aims to develop novel alumina using a facile solid-state reaction for 99Mo/99mTc generator system. The SS-alumina was synthesized from aluminium nitrate nonahydrate and ammonium bicarbonate without solvent. The resulted SS-alumina was then analyzed by FTIR and BET method. 99Mo adsorption and 99mTc releasing study on a series of pH were also performed. FTIR study revealed that the resulting material was Al2O3 with a surface area of 237.65 m2/g. The adsorption capacity, 99mTc yield, 99Mo breakthrough, and alumina breakthrough were 76.06 mg Mo/g alumina, 80.31%, 56.5 µCi/µCi 99mTc, and less than 5 mg/mL, respectively. The elution profile shows a high activity of 99mTc in 2nd and 3rd fraction. It is concluded that the SS-alumina shows good performance as adsorbent material for separation of a 99Mo/99mTc and further work is now underway.

Keywords: alumina, 99Mo, 99mTc, column chromatography, radionuclide generator

1. INTRODUCTION

Technetium-99m (99mTc) is an ideal radiodiagnostic agent due to its pure gamma energy, low gamma energy (140 keV) and short half-life (6.02 h) (El-Absy et al., 2014). 99mTc can be radiolabeled with a variety of radiopharmaceutical kits for diagnostic purposes, for instance, cancer imaging, bone scan, cardiac perfusion, and renal scan (Jürgens et al., 2014). An unlabeled 99mTc or also known as pertechnetate (TcO4-) solution can be utilized for gastrointestinal and thyroid uptake study. 99mTc is available as TcO4- solution obtained from 99Mo/99mTc generator package containing column chromatography system. Alumina is used as column material to adsorb molybdenum-99 (99Mo), the parent radionuclide of 99mTc. 99Mo decays to 99mTc and can be eluted using saline solution every day. 99mTc is carried by the saline solution in TcO4- form, while 99Mo remains in alumina column (Guedes-Silva et al., 2016).

99Mo for a 99Mo/99mTc generator is mainly produced from fission of uranium-235 (235U), either high enriched or low enrich uranium form, which produces high specific
activity of 99Mo (~740 TBq/g) (Jo et al., 2014). The vulnerability of 99Mo supply has been indicated by its shortage in 2009 due to the shutdown of two main nuclear reactors producing 99Mo in Netherland and Canada. Other facilities, mainly research reactors, are relatively old so the crisis of 99Mo supply might be occurred again in the future (Welsh et al., 2015). Hence, alternative production routes of 99Mo have been developed to maintain the long-time stability of 99Mo supply for medical use. The alternative routes can be classified as neutron activation of natural molybdenum using research reactor and irradiation of high enriched molybdenum using cyclotron. The first method is mainly developed in developing countries possessing a research reactor without proper fission-99Mo production facility (Blaauw et al., 2017; M Munir et al., 2019). The second method is mainly carried out in developed countries possessing a proper cyclotron for 99Mo production. The latter method is simpler because a research reactor is not required, however, the production cost is more expensive (Selivanova et al., 2016). Both methods produce lower specific activity 99Mo compared to that of production from fission uranium.

Alumina is material used as adsorbent material in commercial 99Mo/99mTc generator due to its ideal characteristics. Alumina is an inexpensive material and possessing sufficient hardness as a column filler. The main drawback of this material is its low adsorption capacity to molybdenum (20 mg Mo/g alumina) (Guedes-Silva et al., 2016). This adsorption capacity is enough for 99Mo/99mTc generator production using a high specific activity 99Mo, however it is inadequate for low specific activity 99Mo. In order to overcome this problem, many materials with better performance than alumina have been developed, for instance, zirconium-based material (Munir et al., 2018; Saptiama et al., 2016; Saptiama et al., 2015) and several metal oxides (Chakravarty et al., 2014; Marlina et al., 2017), however, their use bring up several drawbacks.

In an attempt to develop an ideal adsorbent material, conventional alumina has been modified to increase its adsorption capacity. Various synthesis method has been performed to produce many derivative alumina, for instance, mesoporous alumina (Saptiama et al., 2017), mesoporous ordered alumina, and doped alumina. Saptiama, et al had developed nanosheet alumina (Saptiama et al., 2019), nanospheres alumina (Saptiama et al., 2018) and alumina embedded mesoporous silica (Saptiama et al., 2018) which has adsorption capacity to molybdenum greater than conventional alumina. However, adsorption study using 99Mo for these materials has not been performed and the synthesis route was quite sophisticated. Chakravarty et al had developed mesoporous alumina with a simple synthesis method which demonstrates adsorption capacity up to 225±10 mg Mo/g alumina and 99mTc yield up to 89% (Chakravarty et al., 2013). The main drawback of this project was a double column system for 99Mo adsorption in the generator package which makes the assembly process more complicated. In order to obtain new alumina with a facile synthesis route and simple assembly on 99Mo/99mTc generator application, the reported synthesis method still needs to improve. In this work, new modified alumina was synthesized.
using a facile solid-state reaction. The modified alumina was then characterised and studied for its 99Mo adsorption, the yield of 99mTc, 99Mo and alumina breakthrough.

2. METHOD

Material

Aluminum nitrate nonahydrate ($\text{Al(NO}_3\text{)}_3\cdot9\text{H}_2\text{O}$) and ammonium bicarbonate (NH_4HCO_3) were purchased from Sigma Aldrich and used without any further purification. Aquabidest was purchased from IPHA Laboratories, while a saline solution was purchased from Otsuka. A low specific activity 99Mo solution was produced by irradiating of natural MoO$_3$ in GA Siwabessy Multipurpose Reactor for 100 hours. The irradiated target was then further processed at the Center for Radioisotope and Radiopharmaceutical Technology, National Nuclear Energy Agency. The nuclear reaction for this production is $^{98}\text{Mo(n, γ)99Mo}$.

Instrument

The functional group of the SS-alumina was analysed using Alpha Fourier Transform Infrared (FTIR) Spectrometer (Bruker), while its surface area was measured using surface area analyser (Quadrasorb SI – Quantachrome Quadrawin). Radioactivity measurement was carried out using dose calibrator (Atomlab 100 plus), while 99Mo breakthrough was measured using multi-channel amplitude pulse analyser (MCA, Ortec GEM-30), High Purity Germanium (HPGe) detector.

Procedure

Material Synthesis

A 37.5 g of Al(NO$_3$)$_3$·9H$_2$O was placed in 100 mL beaker glass followed by addition of 11.85 g of NH$_4$HCO$_3$. The mixture heated at 100°C for 5 hours and stirred every 1 hour until a solid gel was formed. The solid was stored overnight and then calcinated at 700°C for 2 hours. The resulted material was sieved for obtaining a material with size of 300-700 µm.

Adsorption Study

A 0.5 g of the SS-alumina was soaked in a 99Mo solution with a series of pH (4, 5, and 6) for 3 hours. Filtrate and solid were separated and each of them was measured for its radioactivity. The solid was packed in a glass column and stored overnight. After stored, the column was eluted using a saline solution to release 99mTc.

3. RESULT AND DISCUSSION

A high surface area alumina, which is denoted as SS-alumina, has been synthesized using a facile solid-state synthesis method. This synthesis route was carried out without solvent and considered as an inexpensive and simple method for SS-alumina production. The resulting SS-alumina was 9.195 g from the theoretical result of 10.2 g and the synthesis yield was 90.15%. It was considered as a high yield synthesis process due to its simple process without any sophisticated instrument and
The resulting SS-alumina was the white-colour grain with enough hardness for column material.

![Figure 1. FTIR spectra of synthesized the SS-alumina](image1.png)

The FTIR spectra showed in Figure 1 reveals the presence of Al$_2$O$_3$ in a spectral range of 435.13 - 515.81 cm$^{-1}$. The spectra showing the presence of elements from starting material, which should appear in 1000-1500 cm$^{-1}$ for C and N elements, was absent from the Figure 1. It is obvious that the absence of these elements was caused by the elimination during the calcination process. Al(NO$_3$)$_3$·9H$_2$O was chosen as starting material due to its ability to release N during the calcination process. AlCl$_3$, the other alumina starting material, remains Cl residue after calcination, so it is less preferable.

![Figure 2. The plot of 1/[W((W(Po/P)-1)] and relative pressure for surface area calculation](image2.png)
A surface area is an important parameter for adsorbent material, where the adsorption process occurs. The higher the surface area, the higher the adsorption capacity (Indra Saptiama, Kaneti, Suzuki, et al., 2018). The plot of $1/[W((W(Po/P)-1)]$ and relative pressure can be seen in Figure 2, which is used for the surface area calculation. The calculated S_{BET} was 237.65 m^2/g, similar with most alumina S_{BET} which is ranging from 200-450 m^2/g (Chakravarty et al., 2013; Saptiama et al., 2017, 2019; Saptiama et al., 2018). Even though the surface area is an important parameter for the adsorption process, the other parameter, for instance, crystal phase and acidity, might also play an important role (Sulaiman et al., 2018).

![Figure 3. 99Mo/99mTc generator column design](image)

The synthesized SS-alumina was packed in a glass column with frit as seen in Figure 2. A glass frit and glass wool were used for material holding, and material filter, respectively. The top and bottom of glass column were covered with rubber septa and aluminium cap. The output needle was used for releasing the column eluate. This column chromatography design is adapted from a commercial 99Mo/99mTc generator. This is the simplest design which is expected to reduce the possibility of failure in generator assembly. The result of 99Mo adsorption and 99mTc releasing test for the SS-alumina can be seen in Table 1.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>pH 4</th>
<th>pH 5</th>
<th>pH 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loaded 99Mo activity (MBq)</td>
<td>987.90</td>
<td>987.90</td>
<td>976.80</td>
</tr>
<tr>
<td>Adsorption yield (%)</td>
<td>37.68</td>
<td>36.75</td>
<td>19.95</td>
</tr>
<tr>
<td>Adsorption capacity (mg Mo/g alumina)</td>
<td>76.06</td>
<td>74.18</td>
<td>40.28</td>
</tr>
<tr>
<td>Obtained 99mTc Activity (MBq)</td>
<td>215.12</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>99mTc Yield (%)</td>
<td>80.31</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>99Mo breakthrough (µCi/mCi 99mTc)</td>
<td>56.5</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Alumina breakthrough</td>
<td>< 5 mg/mL</td>
<td>NA</td>
<td>NA</td>
</tr>
</tbody>
</table>

Table 1. The performance of SS-Alumina for 99Mo/99mTc generator material
Table 1 reveals that the adsorption capacity of the SS-alumina in pH 4 and 5 was almost similar, while the one in pH 6 was much lower. In high acidity solution, molybdenum tends to form polymolybdate, for instance, heptamolybdate (Mo$_7$O$_{24}^{6-}$) which possesses a more negative charge (Figure 4). While in the lower acidity, molybdate (MoO$_4^{2-}$) is more preferable. This might increase the affinity of 99Mo species to bind alumina. The higher the pH value, the lower the adsorption capacity of alumina (Sulaiman et al., 2018). Table 1 also shows that in pH 4, the column can release the eluate, while in pH 5 and 6 cannot. This might be caused by either the material’s particle size was too small or its hardness was not sufficient (Sholikhah et al., 2016). It is not clear, whether the pH influences the physical properties of the material or not. The resulting 99mTc yield was 80.31%, slightly lower than commercial 99Mo/99mTc generator possessing 99mTc yield more than 90%. The alumina breakthrough was found less than 5 mg/mL which conform to the required specification. The 99Mo breakthrough was of 56.5 µCi/mCi 99mTc which is much higher than the required specification (0.15 µCi/mCi 99mTc) (Uzunov et al., 2018). Hence, the alumina tandem column is required to reduce the 99Mo breakthrough (Marlina et al., 2016).

Figure 4. Structure of molybdate (left) and heptamolybdate (right) (Damjanović et al., 2019)

Figure 5. Elution profile of 99mTcO$_4$ solution from the SS-alumina column
Figure 5 shows that the highest 99mTc yield was found in 2nd and 3rd fraction, while 4th to 7th fraction remain the lower one. This is very promising for 99Mo/99mTc generator utilization because the radioactive concentration can be adjusted. In order to obtain high radioactive concentration, the generator can be eluted with 3 mL only.

4. CONCLUSION
The SS-alumina has been synthesized using solid-state method and its adsorption capacity has been studied. This material possesses higher 99Mo adsorption capacity than ordinary commercialized alumina. It demonstrated a good profile as adsorbent material for 99Mo/99mTc generator system, however, the 99Mo breakthrough was out of specification, so the alumina tandem column is required.

ACKNOWLEDGEMENT
The authors would like to express our gratitude for the support given by the Indonesian government funding through the National Nuclear Energy Agency, BATAN and Ministry of Research Technology and Higher Education through INSINAS program, as well as the International Atomic Energy Agency (IAEA) Coordinated Research Project F22068 (IAEA Research Contract No. 21033).

REFERENCE

Development of Novel Alumina by Solid-State Reaction for 99Mo/99mTc Adsorbent Material

Munir, et.al
Development of Novel Alumina by Solid-State Reaction for $^{99}\text{Mo}/^{99m}\text{Tc}$ Adsorbent Material

103. https://doi.org/10.17146/aij.2015.384

