Deteksi Bakteri Patogen Salmonella typhi pada Sayuran yang dikonsumsi Mentah Menggunakan Metode nested Polymerase Chain Reaction

Idar Idar

Abstract


Salmonella typhi (S. typhi) infection is a zoonotic infection and known as salmonellosis. In the human body, salmonellosis causes an increase in high body temperature or known as typhoid fever that cause high morbidity and mortality in developing countries, especially Indonesia. It was found that out of 22 million cases of typhoid fever, 200 thousand of them ended in death. S. typhi often contaminates food that was consumed raw or not perfectly cooked, for example meat, eggs, dairy products, fruits and vegetables. The conventional method for detecting these bacteria is culture method which time consuming and need BSL 2  facilities. PCR was one of DNA based detection method that could overcome the culture method weakness. In this study conducted detection of Salmonella bacteria in raw vegetables which are usually consumed as fresh by using nested PCR method. The detection procedures were sample preparation; bacterial DNA isolation; amplification by using two sets of primer, ST1-ST2 in first round PCR and ST3-ST4 in second round PCR; and the characterization by using agarose electrophoresis. The results indicated that two of nine raw vegetables, tomatos and cabbages have been contaminated with Salmonella. We conclude that nested PCR could detect Salmonella contamination in raw vegetables.

Keywords


food safety, nested PCR; raw vegetables; Salmonella thypi

References


Ahmed O. B., Asghar A. H., El-Rahim I. A. & AI H., 2014, Detection of Salmonella in Food Samples by Culture and Polymerase Chain Reaction Methods, J Bacteriol Parasitol, 5, 3, 1-3.

Barakat S. M. Mahmoud. 2011. Salmonella – A Dangerous Foodborne Pathogen. InTech: Croatia

Bharmoria A., Shukla A. and Sharma K., 2017, Typhoid Fever as a Challenge for Developing Countries and Elusive Diagnostic Approaches Available for the Enteric Fever, Int J Vaccine Res, 2, 2, 1-16.

Charles R. C., Sheikh A., Krastins B., Harris J. B., Bhuiyan M. S., LaRocque R. C., Logvinenko T., Sarracino D. A., Kudva I. T., Eisenstein J., Podolsky M. J., Kalsy A., Brooks W. A., Ludwig A., John M., Calderwood S. B., Qadri F., &. Ryan E. T., 2010, Characterization of Anti-Salmonella enterica Serotype Typhi Antibody Responses in Bacteremic Bangladeshi Patients by an Immunoaffinity Proteomics-Based Technology. Clinical and Vaccine Immunology, 17, 8, 1188–1195.

Chin C. F., Lai J. Y., Choong Y. S., Anthony A. A., Ismail A. & Lim T. S., 2016, Delineation of B-cell Epitopes of Salmonella enterica serovar Typhi Hemolysin E: Potential antibody therapeutic target, Scientific Reports, 7.

Crump J. A., Luby S. P., Mintz E. D., 2004, The global burden of typhoid fever. Bull World Health Org, 82, 1-24.

Goay Y. X., Chin K. L. dan Tan C. L. L., Yeoh C. Y., Ja’afar J. N., Zaidah A. R., Chinni S. V., and Phua K. K., 2016, Identification of Five Novel Salmonella Typhi-Specific Genes as Markers for Diagnosis of Typhoid Fever Using Single-Gene Target PCR Assays, BioMed Research International. 1-9

Hasan B., Nahar S. G., Shamsuzzaman A. K. M., Aftab S., Yusuf A., 2013, Detection of anti-salmonella antibodies by Immunochromatographic assay at Rajshahi Medical College, Bangladesh, J. Microbiol. Antimicrob, 5, 11, 119-123.

Hatta, M., Sultan, A. R., Pastoor, R. & Smits, H. L., 2011, New Flagellin Gene for Salmonella enterica serovar Typhi from the East Indonesian Archipelago, Am. J. Trop. Med. Hyg, 84, 3, 429-434.

Hayati A. S., Shah S. I. A., Shaikh N., 2011, Evaluation of Typhidot(IgM) in early and rapid diagnosis of typhoid fever, Professional Med J, 18, 2, 259-264.

Krishna S., Desai S., Anjana V. K., Paranthaaman R. G., 2011, Typhidot (IgM) as a reliable and rapid diagnostic test for typhoid fever, Ann. Trop. Med. Public Health, 4, 1, 42-44.

Lee K. M., Runyon M., Herrman, T. J., Phillips R., Hsieh J., 2015, Review of Salmonella detection and identification methods: Aspects of rapid emergency response and food safety, Food Control, 47, 264-276.

Ong, E. B. B., Anthony, A. A., Ismail, A. & Lim, T. S., 2013, Cloning, expression, and purification of the hemolysin/cytolysin (HlyE antigen) from Salmonella enterica serovar Typhi: potential application for immunoassay development, Diagn. Microbiol. Infect. Dis, 77, 87–89.

Song J. B., Cho H., Park M. Y., Na D. S., Moon H. B., & Pat C. H., 1993, Detection of Salmonella typhi in the Blood of Patients with Typhoid Fever by Polymerase Chain Reaction, Journal of Clinical Microbiology, 31, 6, 1439-1443.

Wallace, A. J., 2000, E. coli hemolysin E (HlyE, ClyA, SheA): X-ray crystal structure of the toxin and observation of membrane pores by electron microscopy, Cell, 100, 265–276.




DOI: https://doi.org/10.24252/al-kimia.v6i2.6263

Refbacks

  • There are currently no refbacks.


Al-Kimia has been indexed in :

See Google Scholar Profile for Al-Kimia by clicking here.

Mountain View     

More...

Supported By:

Creative Commons License All Publication by Al-Kimia are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Visitor Number: StatCounter - Free Web Tracker and Counter View Al-Kimia Stats

________________________________________________
Al-Kimia, p-ISSN : 2302-2736, e-ISSN : 2549-9335
Faculty of Science and Technology, Alauddin State Islamic University of Makassar, Indonesia
Jl.H.M.Yasin Limpo No. 36 Samata, Gowa, Sulawesi Selatan
Phone: +6281-355-514-523, Email: al-kimia@uin-alauddin.ac.id