Uric Acid Biosensor Based on Biofilm of L. plantarum using Screen-Printed Carbon Electrode Modified by Magnetite

Dian Siska Rahma Fatonah, Deden Saprudin, Dyah Iswantini, Novik Nurhidayat

Abstract


Biosensor based on biofilm of L. plantarum has been successfully done for determination of uric acid in human urine compared with colorimetric enzymatic produced relative error of less than 5%. L. plantarum has uricase activity to react with uric acid, to maintain the stability of bacteria forming themselves into biofilms. Magnetite is known to increase sensitivity of the biosensor. The combination of magnetite-polyethylene glycol (Fe3O4-PEG) was used to modify the surface of Screen-Printed Carbon Electrode modified (SPCE) and the resulting modified electrode (biofilm/Fe3O4/PEG/SPCE) displayed good electrocatalytic activity to the oxidation of UA. The composition of biofilms with optical density 1, magnetite 100 mgmL-1 and PEG 3% v / v were able to increase the current up to 48% in 4mM of UA. The biosensor with an optimum composition produced good linearity with a concentration range, limit of detection, limit of quantitation, sensitivity, and repeatability were found to be 0.1 - 4.3 mM, 70 µM,  234 µM, 25.392 µA mM-1, 2.38%, respectively. This biosensor stable up to 49 days of measurement with the remaining activity was 90.70% and selective for interference compounds such as salt, urea, glucose, ascorbic acid. This method has a good stability, sensitivity, and potential application in clinical analysis.

 

Keyword: biofilm, biosensor, L. plantarum, magnetite, uric acid.

References


Anderson, A., Vijayakumar, S. (2011). Purification and optimization of uricase enzyme produced by Pseudomonas aeruginosa. Journal of Experimental Sciences. 2(11): 5-8.

AOAC. (2011). Guidance for standard method performance requirements. United state (US): AOAC International 1-27.

Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G., Garrido, C., Guzzo, J. (2015). Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiology. doi: 10.1016/j.fm.2015.04.009.

Atalla, M. M., Farag, M. M., Eman, R. H., Abd-El-Lataif, M. S., Nehad, E. A. (2009). Optimum conditions for uricase enzyme production by Gliomastix gueg. Malaysian Journal of Microbiology. 5(1): 45–50.

Chaudhari, R. D., Joshi, A. B., Srivastava, R. (2012). Uric acid biosensor based on chemiluminescence detection using a nano-micro hybrid matrix. Sensors and Actuators B. Chemical. 173: 882–889. doi: 10.1016/j.snb.2012.08.001.

Cheng, W., Tang, K., Qi, Y., Sheng, J., Liu, Z. (2010). One-step synthesis of superparamagnetic monodisperse porous Fe3O4 hollow and core-shell spheres. Journal of Materials Chemistry. 20: 1799–1805. doi: 10.1039/b919164j.

Donlan, R. M., Conserton, J. W. (2002). Biofilms: Survival mechanisms of clinically relevant microorganisms. Clinical Microbiology Reviews. 15(2): 167-189. doi: 10.1128/CMR.15.2.167–193.2002.

Govindasamy, M., Mani, V., Chen, S., Sathiyan, A. (2016). Sensitive and selective determination of uric acid using polyaniline and iron composite film modified electrode. International Journal of Electrochemical Science. 11: 8730–8737.

Honeychurch, K. C. (2017). The determination of uric acid in human saliva by liquid chromatography with electrochemical detection. Journal of Analytical, Bioanalytical and Separation Techniques. 2(1): 1–5.

Iswantini, D., Nurhidayat, N., Trivadila, Mardiah, E. (2009). Aktivitas urikase yang dihasilkan dari berbagai sel Lactobacillus plantarum dan parameter kinetikanya. Jurnal Ilmu Pertanian Indonesia. 14(3): 163–169.

Iswantini, D., Rachmatia, R., Diana, N. R., Nurhidayat, N., Akhiruddin, Saprudin, D. (2016). Activity and stability of biofilm uricase of Lactobacillus plantarum for uric acid biosensor. IOP Confference Series: Earth and Evironmental Sciences. 31. doi:10.1088/1755-1315/31/1/012028.

Junejo, Y., Baykal, A., Sozeri, H. (2013). Simple hydrothermal synthesis of Fe3O4-PEG nanocomposite. Central European Journal of Chemistry. 11(9): 1527-1532. doi: 10.2478/s11532-013-0281-9.

Maunatin, A., Khanifa. (2012). Uji potensi probiotik Lactobacillus plantarium secara in-vitro. Alchemy. 2(1): 26–34.

Sanaeifar, N., Rabiee, M., Abdolrahim, M., Tahriri, M., Vashaee, D., Tayebi, L. (2017). A novel electrochemical biosensor based on Fe3O4 nanoparticles-polyvinyl alcohol composite for sensitive detection of glucose. Analytical Biochemistry. doi: 10.1016/j.ab.2016.12.006.

Tai, M. F., Lai, C. W., Hamid, S. B. A. (2016). Facile synthesis polyethylene glycol coated magnetite nanoparticles for high colloidal stability. Journal of Nanomaterials. doi: 10.1155/2016/8612505.

Yáñez-sedeño, P., Campuzano, S., Pingarrón, J. M. (2016). Magnetic particles coupled to disposable screen printed transducers for electrochemical biosensing. Sensors. 16. doi: 10.3390/s16101585.

Yulinery, T., Nurhidayat, N. (2015). Uji aktivitas antibakteri Lactobacillus plantarum terseleksi dari buah markisa (Passiflora edulis) dan kaitannya dengan genplantarisin A (plnA). Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia. 1(2): 270–277. doi: 10.13057/psnmbi/m010217.




DOI: https://doi.org/10.24252/al-kimia.v6i2.6300

Refbacks

  • There are currently no refbacks.


Al-Kimia has been indexed in :

See Google Scholar Profile for Al-Kimia by clicking here.

Mountain View     

More...

Supported By:

Creative Commons License All Publication by Al-Kimia are licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.

Visitor Number: StatCounter - Free Web Tracker and Counter View Al-Kimia Stats

________________________________________________
Al-Kimia, p-ISSN : 2302-2736, e-ISSN : 2549-9335
Faculty of Science and Technology, Alauddin State Islamic University of Makassar, Indonesia
Jl.H.M.Yasin Limpo No. 36 Samata, Gowa, Sulawesi Selatan
Phone: +6281-355-514-523, Email: al-kimia@uin-alauddin.ac.id