PREDIKSI STATUS ANEMIA DENGAN PENDEKATAN PEMBELAJARAN MESIN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN SELEKSI FITUR FIREFLY ALGORITHM

Authors

  • Tiara Meylinda S Universitas Yudharta Pasuruan
  • Lukman Hakim Universitas Yudharta Pasuruan

Keywords:

Akurasi, Anemia, Firefly Algorithm, Seleksi Fitur, SVM

Abstract

Anemia merupakan kelainan tubuh yang ditandai dengan rendahnya kadar hemoglobin (Hb) dalam sel darah, dan dapat menjadi masalah kesehatan yang serius terlebih pada remaja perempuan jika tidak segera diobati dengan baik. Penelitian ini dilakukan untuk memprediksi status anemia berdasarkan data pasien menggunakan algoritma SVM dengan pemilihan fitur Firefly Algorithm untuk meningkatkan akurasi. Pengujian dilakukan dengan menggunakan empat kernel algoritma SVM yaitu kernel Linear, Polynomial, RBF dan Sigmoid. Hasil penelitian menunjukkan bahwa penggabungan FA dan SVM dapat meningkatkan akurasi pada tiga kernel SVM yaitu kernel linear dari akurasi awal 98.95% menjadi 99.65%, kernel polynomial akurasi awal 94.74% menjadi 98.60%, pada kernel RBF akurasi awal 93.68% menjadi 98.25%, namun pada kernel sigmoid akurasi mengalami penurunan dari akurasi awal 47.02% menjadi 12.98%. Kesimpulannya, penerapan FA untuk memilih fitur-fitur penting pada SVM efektif dan berdampak pada peningkatan akurasi untuk tiga kernel SVM dan penurunan akurasi pada satu kernel hal tersebut terjadi karena underfitting. Seleksi fitur menjadi efektif jika menghasilkan kombinasi fitur yang tepat dan dapat menjadi tidak efektif jika menghasilkan kombinasi fitur yang tidak tepat.

Downloads

Download data is not yet available.

References

[1] D. E. Yanti, L. Framesti, and A. Desiani, “Perbandingan Algoritma C4.5 Dan Svm Dalam Klasifikasi Penyakit Anemia,” J. Inform. Polinema, vol. 9, no. 4, pp. 427–434, 2023, doi: 10.33795/jip.v9i4.1381.

[2] T. Meischl et al., “Anaemia is independently associated with mortality in patients with hepatocellular carcinoma,” ESMO Open, vol. 9, no. 6, p. 103593, 2024, doi: 10.1016/j.esmoop.2024.103593.

[3] D. Chandra, V. Capoor, A. Maitri, and R. Naithani, “Autoimmune Hemolytic Anemia in Children,” Pediatr. Hematol. Oncol. J., 2024, doi: 10.1016/j.phoj.2024.08.002.

[4] S. R. Nadhiroh, A. R. Hasugian, Nurhayati, A. D. Muthiah, and A. N. P. A. Putri, “Model development for anemia prediction in pregnancy,” Clin. Epidemiol. Glob. Heal., vol. 28, no. June, p. 101654, 2024, doi: 10.1016/j.cegh.2024.101654.

[5] M. Yackobovitch-Gavan, D. Ben-Hefer, I. Feldhamer, and J. Meyerovitch, “The association between infantile microcytic anemia and attention deficit hyperactivity disorder, a case-control study,” Heliyon, vol. 10, no. 12, p. e33430, 2024, doi: 10.1016/j.heliyon.2024.e33430.

[6] J. Pacheco-Aranibar, K. Diaz-Rodriguez, R. Zapana-Begazo, S. Criollo-Arteaga, J. A. Villanueva-Salas, and J. C. Bernabe-Ortiz, “Intestinal microbiota dataset revealed by high-throughput sequencing of 16S rRNA in children with anemia in southern Peru,” Data Br., vol. 55, p. 110681, 2024, doi: 10.1016/j.dib.2024.110681.

[7] E. Tasia, R. Zaid, I. Zarier, S. Kenia, and P. Loka, “Klasifikasi Penyakit Gagal Jantung Menggunakan Supervised Learning,” Sentimas, pp. 1–7, 2023, [Online]. Available: https://journal.irpi.or.id/index.php/sentimas/article/view/535

[8] M. Azhari, Z. Situmorang, and R. Rosnelly, “Perbandingan Akurasi, Recall, dan Presisi Klasifikasi pada Algoritma C4.5, Random Forest, SVM dan Naive Bayes,” J. Media Inform. Budidarma, vol. 5, no. 2, p. 640, 2021, doi: 10.30865/mib.v5i2.2937.

[9] R. G. Wardhana, G. Wang, and F. Sibuea, “Penerapan Machine Learning Dalam Prediksi Tingkat Kasus Penyakit Di Indonesia,” J. Inf. Syst. Manag., vol. 5, no. 1, pp. 40–45, 2023, doi: 10.24076/joism.2023v5i1.1136.

[10] S. Samantaray, A. Sahoo, and F. Baliarsingh, “Groundwater level prediction using an improved SVR model integrated with hybrid particle swarm optimization and firefly algorithm,” Clean. Water, vol. 1, no. December 2023, p. 100003, 2024, doi: 10.1016/j.clwat.2024.100003.

[11] E. Pusporani, S. Qomariyah, and I. Irhamah, “Klasifikasi Pasien Penderita Penyakit Liver dengan Pendekatan Machine Learning,” Inferensi, vol. 2, no. 1, p. 25, 2019, doi: 10.12962/j27213862.v2i1.6810.

[12] M. S. Reza, U. Hafsha, R. Amin, R. Yasmin, and S. Ruhi, “Improving SVM performance for type II diabetes prediction with an improved non-linear kernel: Insights from the PIMA dataset,” Comput. Methods Programs Biomed. Updat., vol. 4, no. August, p. 100118, 2023, doi: 10.1016/j.cmpbup.2023.100118.

[13] M. Zhang, M. Treder, D. Marshall, and Y. Li, “Explaining the predictions of kernel SVM models for neuroimaging data analysis,” Expert Syst. Appl., vol. 251, no. March, p. 123993, 2024, doi: 10.1016/j.eswa.2024.123993.

[14] I. Anshory et al., “Optimization DC-DC boost converter of BLDC motor drive by solar panel using PID and firefly algorithm,” Results Eng., vol. 21, no. March 2023, p. 101727, 2024, doi: 10.1016/j.rineng.2023.101727.

[15] Y. A. Sari, A. G. Hapsani, S. Adinugroho, L. Hakim, and S. Mutrofin, “Preprocessing of Skin Images and Feature Selection for Early Stage of Melanoma Detection using Color Feature Extraction,” Int. J. Artif. Intell. Res., vol. 4, no. 2, p. 95, 2021, doi: 10.29099/ijair.v4i2.165.

[16] S. Jalota and M. Suthar, “Modelling of Marshall stability of polypropylene fibre reinforced asphalt concrete using support vector machine and artificial neural network,” International Journal of Transportation Science and Technology, Tongji University and Tongji University Press, 2024. doi: 10.1016/j.ijtst.2024.08.001.

[17] S. Dwiasnati and Y. Devianto, “Optimasi Prediksi Bencana Banjir menggunakan Algoritma SVM untuk penentuan Daerah Rawan Bencana Banjir,” Pros. SISFOTEK, pp. 202–207, 2021, [Online]. Available: http://seminar.iaii.or.id/index.php/SISFOTEK/article/view/283

[18] N. Maulidah, R. Supriyadi, D. Y. Utami, F. N. Hasan, A. Fauzi, and A. Christian, “Prediksi Penyakit Diabetes Melitus Menggunakan Metode Support Vector Machine dan Naive Bayes,” Indones. J. Softw. Eng., vol. 7, no. 1, pp. 63–68, 2021, doi: 10.31294/ijse.v7i1.10279.

[19] H. S. W. Hovi, A. Id Hadiana, and F. Rakhmat Umbara, “Prediksi Penyakit Diabetes Menggunakan Algoritma Support Vector Machine (SVM),” Informatics Digit. Expert, vol. 4, no. 1, pp. 40–45, 2022, doi: 10.36423/index.v4i1.895.

[20] Y. Simamora, “Optimasi Rekonfigurasi Jaringan Distribusi Tegangan Menengah Kota Medan Menggunakan Algoritma Kunang – Kunang (Firefly Algorithm),” Sutet, vol. 13, no. 2, pp. 82–90, 2024, doi: 10.33322/sutet.v13i2.2240.

[21] I. Septiyafi, H. Suprajitno, and A. B. Pratiwi, “Penerapan Algoritma Kunang-Kunang pada Open Vehicle Routing Problem (OVRP),” Contemp. Math. Appl., vol. 1, no. 1, pp. 46–55, 2019, doi: 10.20473/conmatha.v1i1.14774.

[22] I. Czarnowski, “Firefly algorithm for instance selection,” Procedia Comput. Sci., vol. 192, pp. 2269–2278, 2021, doi: 10.1016/j.procs.2021.08.240.

[23] R. Pujianto, D. Yusup, and T. N. Padilah, “Analisis Sentimen Opini Publik Tentang Vaksin Booster Menggunakan Metode Support Vector Machine dan firefly Algorithm,” J. Ilm. Wahana Pendidikan, Desember, vol. 2022, no. 23, pp. 363–373, 2022, [Online]. Available: https://doi.org/10.5281/zenodo.7397891

[24] Styawati, Andi Nurkholis, Zaenal Abidin, and Heni Sulistiani, “Optimasi Parameter Support Vector Machine Berbasis Algoritma Firefly Pada Data Opini Film,” J. RESTI (Rekayasa Sist. dan Teknol. Informasi), vol. 5, no. 5, pp. 904–910, 2021, doi: 10.29207/resti.v5i5.3380.

[25] M. Lutfi, H. S. Rizal, M. Hasyim, M. F. Amrulloh, and Z. N. Saadah, “Feature Extraction and Naïve Bayes Algorithm for Defect Classification of Manalagi Apples,” J. Phys. Conf. Ser., vol. 2394, no. 1, 2022, doi: 10.1088/1742-6596/2394/1/012014.

[26] N. Bacanin et al., “Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection,” Heliyon, vol. 9, no. 4, pp. 1–11, 2023, doi: 10.1016/j.heliyon.2023.e15378.

[27] N. Bacanin, K. Venkatachalam, T. Bezdan, M. Zivkovic, and M. Abouhawwash, “A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset,” Microprocess. Microsyst., vol. 98, no. January, 2023, doi: 10.1016/j.micpro.2023.104778.

[28] A. P. Masoumi, A. R. Tavakolpour-Saleh, and V. Bagherian, “Performance investigation of an active free-piston Stirling engine using artificial neural network and firefly optimization algorithm,” Heliyon, vol. 10, no. 7, pp. 1–19, 2024, doi: 10.1016/j.heliyon.2024.e28387.

[29] T. Yuan, Y. Mu, T. Wang, Z. Liu, and A. Pirouzi, “Using firefly algorithm to optimally size a hybrid renewable energy system constrained by battery degradation and considering uncertainties of power sources and loads,” Heliyon, vol. 10, no. 7, p. e26961, 2024, doi: 10.1016/j.heliyon.2024.e26961.

[30] S. Larabi Marie-Sainte and N. Alalyani, “Firefly Algorithm based Feature Selection for Arabic Text Classification,” J. King Saud Univ. - Comput. Inf. Sci., vol. 32, no. 3, pp. 320–328, 2020, doi: 10.1016/j.jksuci.2018.06.004.

[31] S. Rabbani, D. Safitri, N. Rahmadhani, A. A. F. Sani, and M. K. Anam, “Perbandingan Evaluasi Kernel SVM untuk Klasifikasi Sentimen dalam Analisis Kenaikan Harga BBM,” MALCOM Indones. J. Mach. Learn. Comput. Sci., vol. 3, no. 2, pp. 153–160, Oct. 2023, doi: 10.57152/malcom.v3i2.897.

[32] X. Wang, Z. Yan, Y. Zeng, X. Liu, X. Peng, and H. Yuan, “Research on correlation factor analysis and prediction method of overhead transmission line defect state based on association rule mining and RBF-SVM,” Energy Reports, vol. 7, pp. 359–368, 2021, doi: 10.1016/j.egyr.2021.01.058.

[33] M. Han, S. Soradi-Zeid, T. Anwlnkom, and Y. Yang, “Firefly algorithm-based LSTM model for Guzheng tunes switching with big data analysis,” Heliyon, vol. 10, no. 12, p. e32092, 2024, doi: 10.1016/j.heliyon.2024.e32092.

[34] W. S. Dharmawan, “KOMPARASI ALGORITMA KLASIFIKASI SVM-PSO DAN C4.5-PSO DALAM PREDIKSI PENYAKIT JANTUNG,” J. Inform. Manaj. dan Komput., vol. 13, no. 2, pp. 31–41, 2021.

[35] D. E. Yanti, L. Framesti, and A. Desiani, “PERBANDINGAN ALGORITMA C4.5 DAN SVM DALAM KLASIFIKASI PENYAKIT ANEMIA,” J. Inform. Polinema, vol. 9, no. 4, pp. 427–434, Aug. 2023, doi: 10.33795/jip.v9i4.1381.

Downloads

Published

2025-05-01

How to Cite

[1]
Tiara Meylinda S and L. Hakim, “PREDIKSI STATUS ANEMIA DENGAN PENDEKATAN PEMBELAJARAN MESIN ALGORITMA SUPPORT VECTOR MACHINE (SVM) DAN SELEKSI FITUR FIREFLY ALGORITHM”, INSTEK, vol. 10, no. 1, pp. 120–129, May 2025.

Issue

Section

Volume 10 Nomor 1 April Tahun 2025