Antituberculosis Activity Test of N-p-Methylbenzyl-p-coumaramide (MBC) Against M. tuberculosis H37Rv

  • Nasriadi Dali Wela Jurusan Kimia FMIPA UHO Kendari
  • Arniah Dali Wela Halu Oleo University
  • Seniwati Dali Department of Chemistry, Faculty of Mathematics and Natural Sciences, Hasanuddin University
  • Hilda Ayu Melvi Amalia


An antituberculosis activity test of N-p-Methylbenzyl-p-coumaramide (MBC) against M. tuberculosis H37Rv has been carried out. The purpose of this study was to determine the antituberculosis activity of MBC against M. tuberculosis H37Rv. The study was conducted using agar diffusion method. The test solution was prepared by dissolving MBC in 20 mL Ogawa medium to a final concentration of 0.25; 0.50; 1; and 2 mg/L. PDA media that had been inoculated with M. tuberculosis H37Rv (seeded agar) were poured over the base layer on the petridish surface. Paper disks that have been immersed in the test solution were put symmetrically on the seeded agar. Furthermore, the seeds were incubated at 37 oC for 48 hours. Then the diameter of the inhibition zone was measured to the accuracy of 0.5 mm with a ruler. The results showed that MBC has biological activity as an antituberculosis. MBC can inhibit the growth of M. tuberculosis H37Rv at a concentration of 0.25; 0.50; 1; and 2 mg/L with a diameter of inhibitory zones respectively 8.9; 13.7; 18.5; and 21.3 mm. This showed that the inhibition of MBC on the growth of M. tuberculosis H37Rv increased with increasing concentration of MBC used.


Download data is not yet available.

Author Biographies

Nasriadi Dali Wela, Jurusan Kimia FMIPA UHO Kendari
Jurusan Kimia
Arniah Dali Wela, Halu Oleo University
Department of Chemistry Education


Alistair, K. B., Ahmed, K. B. A., Fatimah, M. A. A., Joseph, L. B., Jason, H. G., Yucheng, L., and Jonathan, D. S. 2020. Identification of Substituted Amino Acid Hydrazides as Novel Anti-Tubercular Agents Using a Scaffold Hopping Approach. Molecules, 25(10), 2387-2393. doi: 10.3390/molecules25102387.

Allix, B. C., & Arandjelovic, I. 2018. Prediction of Susceptibility to First-Line Tuberculosis Drugs by DNA Sequencing. N Eng J. Med, 37(1), 1403-1409. doi: 10.1056/NEJMoa1800474

Andrews, J. M. 2001. Determination of Minimum Inhibitory Concentrations. Journal of Antimicrobial Chemoteraphy, 48(1), 5-16.

Boshoff, H. I., Mizrahi, V., and Barry, C. E. 2016. Effects of Pyrazinamide on Fatty Acids Synthesis by Whole Mycobacterial Cells and Purified Fatty Acid Synthase I. J. Bacteriol, 184(8), 2167-2172. doi: 10.1128/jb.184.8.2167-2172.2016

Byoung, S. K., Kim, M. N., Sung, H., Koh, Y., Kim, W. S., Song, J. W., Yeon, M. O., Lee, S. D., Lee, S. W., Lee, J. S., Lim, C. M., Choi, C. M., Huh, J. W., Hong, S. B., Park, S., Shim, T. S., Chong, Y. P., and Jo, K. W. 2018. In Vitro MIC Values of Rifampicin and Ethambutol and Treatment Outcome in Mycobacterium Avium Complex Lung Disease. Antimicrob Agents Chemother, 62(10), 00491-004918. doi: 10.1128/AAC.00491-18

Dali, A., & Dali, N. 2014. Isolasi dan Identifikasi Senyawa Antibakteri dari Rumput Laut Eucheuma spinosum. Laporan Penelitian. FKIP UHO, Kendari.

Dali, N., & Dali, A. 2017. Sintesis N-p-Metilbenzil-p-Kumaramida dari Asam p-Kumarat. Al-Kimia, 5(2), 154–160. doi: 10.24252/al-kimia.v5i2.3643

David, C. P., Yoninah, S., Susan, R., Petrie, M. R., Rory, P. R., Nadim, S., Richard, H., and Charles, A. P. 2015. The Clinical Pharmacokinetics of Rifampicin and Ethambutol in HIV Infected Persons with Tuberculosis. Clin Infect Dis, 41(11), 1638-1647. doi: 10.1086/49802

David, E. G., Barbara, A. B. E., Sara, S., Jerry, M., Griffith, L., and Richard, J. W. 2015. Ethambutol Ocular Toxicity in Treatment Regimens for Mycobacterium Avium Complex Lung Disease. Am J Respir Crit Care Med, 172(2), 250-253. doi: 10.1164/rccm.200407-863OC

Dooley, K. E., Miyahara, s., and von Groote, B. F. 2020. Early Bactericidal Activity of Different Isoniazid Doses for Drug Resistant TB (INH Indsight). A Randomized Open Label Clinical Trial. Am J. Respir Crit Care Med, 64(2), 753-758. doi: 10.1164/rccm.201910-1960OC

Ellard, G. A., & Gammon, P. T. 2015. Pharmacokinetics of Isoniazid Metabolism in Man. J. Pharmacokinet Biopharm, 4(1), 83-113. doi: 10.1007/BF01086149

Firdaus, Soekamto, N. H., Umar, U., Dali, S., Makmun, dan Agustiningsih, A. 2011. Sintesis Derivate Senyawa p-Kumaramida dan Uji Bioaktivitasnya Terhadap Sel Kanker Leukimia P-388. Laporan Penelitian. FMIPA Unhas, Makassar.

Ghodousi, A., Tagliani, E., and Karunaratne, E. 2019. Isoniazid Resistance in Mycobacterium Tuberculosis is a Heterogeneous Phenotype Composed of Overlapping MIC Distributions with Different Underlying Resistance Mechanisms. J. Antimicrob Chemother, 63(2), 863-868. doi: 10.1128/AAC.00092-19

Gupta, A., Montepiedra, G., and Aaron, L. 2019. Isoniazid Preventive Therapy in HIV Infected Pregnant and Postpartum Women. N Engl J. Med, 38(1), 1333-1346. doi: 10.1056/NEJMoa1813060

Page, David S.; Soendoro, R. 1989. Prinsip-prinsip Biokimia (Edisi Kedu). Jakarta: Penerbit Erlangga.

Rastina, Mirnawati, S., dan Letje, W. 2015. Aktivitas Antibakteri Ekstrak Etanol Daun Kari (Marroya koenigilli) Terhadap Staphylococcus aureus, Escherichia coli, dan Pseudomonas sp. Jurnal Kedokteran Hewan, 9(2), 45-49. doi: 10.21157/j.ked.hewan.v9i2.2842

Rattan, A., Kalia, A., dan Ahmad, N. 1998. Multidrug Resistant Mycobacterium tuberculosis: Molecular Perspectives. Emerging Infectious Diseases, 4(2), 195-209. doi: 10.3201/eid0402.980207

Retnoningrum, D. S., dan Kembaren, R. F., 2015. Mekanisme Tingkat Molekul Resistensi Terhadap Beberapa Obat pada Mycobacterium tuberculosis. Acta Pharmaceutica Indonesia, 29(3), 92-95.

Roger, K. V., Gunar, G., Kibuule, D., Christian, H., and Rennie, T. W. 2016. Optimizing Treatment Outcome of First-line Anti-tuberculosis Drugs: The Role of Therapeutic Drug Monitoring. Eur J Clin Pharmacol, 72(8), 905-916. doi: 10.1007/s00228-016-2083-4

Schön, T., Juréen, P., and Giske, C. G. 2019. Evaluation of Wild-type MIC Distributions as a Tool for Determination of Clinical Breakpoints for Mycobacterium Tuberculosis. J. Antimicrob Chemother, 64(2), 786-792. doi: 10.1093/jac/dkp262

Tang, P. 2015. Boroc Acid Catalyzed Amide Formation from Carboxylic Acid and Amines N-Benzyl-4-Phenylbutyramide. J. Organic Syntheses. Vol. 81, 262-267. doi: 10.1002/0471264229.os081.28

Yang, H., Enimil, A., and Gillani, F. S. 2018. Evaluation of the Adequacy of the 2010 Revised World Health Organization Recommended Dosages of the First-Line Antituberculosis Drugs for Children. Pediatr Infect Dis J. 37(2), 37-43. doi: 10.1097/INF.0000000000001687

Ying, Z., Wanliang, S., and Wenhong, Z. 2018. Mechanisms of Pyrazinamide Action and Resistance. Microbiol Spectr, 2(4), 1-12. doi: 10.1128/microbiolspec. MGM2-0023-2013

Younossian, A. B., Rochat, T., Katterer, J. P., Wacker, J., and Janssens, J. P. 2015. High Hepatotoxity of Pyrazinamide and Ethambutol for Treatment of Latent Tuberculosis. Eur Respir J, 26(3), 462-464. doi: 10.1183/09031936.05.00006205

Yunting, G., Xia, Y., Guanglu, J., Xiaobo, W., Yifeng, M., Yunxu, L., and Hairong, H. 2016. Pyrazinamide Resistance Among Multidrug-Resistant Tuberculosis Clinical Isolates in a National Referral Center of China and its Correlations with pncA, rpsA, and panD Gene Mutations. Diagn Microbiol Infect Disc, 84(3), 207-2011. doi: 10.1016/j.diagmicrobio.2015.10.017.

How to Cite
Wela, N. D., Wela, A. D., Dali, S., & Amalia, H. A. M. (2020). Antituberculosis Activity Test of N-p-Methylbenzyl-p-coumaramide (MBC) Against M. tuberculosis H37Rv. Al-Kimia, 8(2), 113-121.
Abstract viewed = 284 times