Artikel Review: Faktor yang Mempengaruhi Persen Biogasoline Minyak Nabati Menggunakan Katalis HZSM-5 dengan Metode Catalytic Cracking

  • Dewinta Intan Laily Universitas Negeri Surabaya
  • Dina Kartika Maharani Universitas Negeri Surabaya


The increase in fuel consumption of oil has an impact on the energy crisis. Biogasoline is one of the alternative energies that has the potential to solve the problem. The fact that biogasoline results are low is a challenge for further research. One of the methods used to produce biogasoline is the catalytic cracking method. Such methods generally use catalyst to help to speed up the reaction. HZSM-5 is one of the catalysts that has been widely used in various applications. In this review article will compare the value of % biogasoline between several types of crushed vegetable oils with hzsm-5 catalysts using catalytic cracking methods. Based on the results of the analysis it can be known that the method of catalytic cracking using the catalyst HZSM-5 produces a good % biogasoline value so the use of catalyst HZSM-5 is recommended in vegetable oil reactions. In addition, there are factors that affect the value of % biogasoline namely: rector type, operating temperature, reaction time, surface area and pore size catalyst HZSM-5 as well as vegetable oil type.


Download data is not yet available.

Author Biographies

Dewinta Intan Laily, Universitas Negeri Surabaya
Jurusan Kimia
Dina Kartika Maharani, Universitas Negeri Surabaya


Alfernando, O., Sarip, R., Anggraini, T., & Nazarudin, N. (2019). Catalytic Cracking of Methyl Ester from Used Cooking Oil with Ni-Ion-Exchanged ZSM-5 Catalyst. Makara Journal of Science, 169–178.

Botas, J. A., Serrano, D. P., García, A., Vicente, J. de, & Ramos, R. (2012). Catalytic Conversion of Rapeseed Oil into Raw Chemicals and Fuels Over Ni and Mo-Modified Nanocrystalline ZSM-5 Zeolite. Catalysis Today, 59–70.

BPH MIGAS. (2017). Konsumsi BBM Nasional Per Tahun. Retrieved September 2, 2020, from

Budianto, A., Prajitno, D. H., & Budhikarjono, K. (2014). Biofuel Production from Candlenut Oil Using Catalytic Cracking Process with Zn/HZSM-5 Catalyst. Journal Of Engineering And Applied Sciences, 9(11), 4.

Chang, W. H., & Tye, C. T. (2013). Catalytic Cracking of Used Palm Oil Using Composite Zeolite. The Malaysian Journal Of Analytical Sciences, 17(1), 9.

Doronin, V. P., Lipin, P. V., Potapenko, O. V., Vysotskii, V. V., Gulyaeva, T. I., & Sorokina, T. P. (2018). Modifying Zeolite ZSM-5 to Increase the Yield of Light Olefins in Cracking Feedstocks of Petroleum and Vegetable Origin. Catalysis in Industry, 10(4), 335–343.

Doronin, V. P., Potapenko, O. V., Lipin, P. V., & Sorokina, T. P. (2014). Conversion of Vegetable Oils under Conditions of Catalytic Cracking. Catalysis in Industry, 6(1), 53–59.

Doronin, V. P., Potapenko, O. V., Lipin, P. V., Sorokina, T. P., & Buluchevskaya, L. A. (2012). Catalytic Cracking of Vegetable Oils for Production of High-Octane Gasoline and Petrochemical Feedstock. Petroleum Chemistry, 52(6), 392–400.

Fotouh TM, A., Mazen, O. A., & Ashour, I. (2017). An Experimental Study on the Influence of Ethanol and Automotive Gasoline Blends. Journal of Petroleum & Environmental Biotechnology, 08(01).

Ganesan, R., Thiripuranthagan, S., & Subba, S. (2019). Synthesis and Characterization of Core-Shell Modeled AlMCM-48/HZSM-5 Composite Catalyst and Studies on Its Catalytic Activity in Cracking of Pongamia Oil into Bio Liquid Products. BioEnergy Research, 12(2), 388–399.

Gurdeep Singh, H. K., Yusup, S., Quitain, A. T., Abdullah, B., Ameen, M., Sasaki, M., … Cheah, K. W. (2020). Biogasoline Production from Linoleic Acid via Catalytic Cracking Over Nickel and Copper-doped ZSM-5 Catalysts. Environmental Research, 186, 109616.

Gurdeep Singh, H. K., Yusup, S., Quitain, A. T., Kida, T., Sasaki, M., Cheah, K. W., & Ameen, M. (2019). Production of gasoline range hydrocarbons from catalytic cracking of linoleic acid over various acidic zeolite catalysts. Environmental Science and Pollution Research, 26(33), 34039–34046.

Haryani, N., Harahap, H., Taslim, & Irvan. (2020). Biogasoline Production via Catalytic Cracking Process Using Zeolite and Zeolite Catalyst Modified with Metals: A Review. IOP Conference Series: Materials Science and Engineering, 801, 012051.

Hu, C., Xiao, R., & Zhang, H. (2017). Ex-situ Catalytic Fast Pyrolysis of Biomass Over HZSM-5 in A Two-Stage Fluidized-Bed/Fixed-Bed Combination Reactor. Bioresource Technology, 243, 1133–1140.

Ismail, A., Mansour, S., Yossif, M., Bekhit, M., & Negm, N. (2018). Production of Jet Biofuels from Catalytic Cracking of Vegetable Oils Using Acidic Catalysts. Current Journal of Applied Science and Technology, 27(4), 1–9.

Li, L., Quan, K., Xu, J., Liu, F., Liu, S., Yu, S., … Ge, X. (2014). Liquid Hydrocarbon Fuels from Catalytic Cracking of Rubber Seed Oil Using USY As Catalyst. Fuel, 123, 189–193.

Lin, C.-H., Chen, Y.-K., & Wang, W.-C. (2020). The Production of Bio-Jet Fuel From Palm Oil Derived Alkanes. Fuel, 260, 116345.

Majed, M. A. A., & Tye, C. T. (2018). Catalytic Cracking of Used Vegetable Oil to Green Fuel With Metal Functionalized ZSM-5 Catalysts. Malaysian Journal of Analytical Science, 22(1), 9.

Molefe, M., Nkazi, D., & Mukaya, H. E. (2019). Method Selection for Biojet and Biogasoline Fuel Production from Castor Oil: A Review. Energy & Fuels, 33(7), 5918–5932.

Musa, M. L., Mat, R., & Abdullah, T. A. T. (2018). Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) by HZSM-5 Zeolite Based Catalysts. Bulletin of Chemical Reaction Engineering & Catalysis, 456–465.

Ortiz-Bravo, C. A., Zandonai, C. H., Olsen-Scaliante, M. H. N., & Fernandes, N. R. C. (2020). Producing Gasoline Like Hydrocarbons by Cracking Crude Soybean Oil: Tuning The NaZSM-5 Zeolite’s Acidity for Increasing The Catalyst Lifetime. Brazilian Journal of Chemical Engineering.

Rahayu, P. E. (2013). Konversi Minyak Sawit Menjadi Biogasoline Menggunakan Katalis Ni/Zeolit Alam. Indonesian Journal of Chemical Science, 6.

Ramos, R., García, A., Botas, J. A., & Serrano, D. P. (2016). Enhanced Production of Aromatic Hydrocarbons by Rapeseed Oil Conversion over Ga and Zn Modified ZSM-5 Catalysts. Industrial & Engineering Chemistry Research, 55(50), 12723–12732.

Ramya, G., Sivakumar, T., Arif, M., & Ahmed, Z. (2015). Application of Microporous Catalysts in the Production of Biofuels from Non Edible Vegetable Oils and Used Restaurant Oil. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 37(8), 878–885.

Roesyadi, A., Hariprajitno, D., Nurjannah, & Savitri, S. D. (2012). The Catalyst Selectivity to Cracking Product of Palm Oil. Proceeding of International Conference on Chemical and Material Engineering, 6.

Sangdara, P., Subsadsana, M., & Ruangviriyachai, C. (2017). Liquid Biofuel Production from Palm Oil Using Dual-Function of Zn/HZSM-5 Catalyst. Oriental Journal of Chemistry, 33(5), 2257–2262.

Sirajudin, N., Jusoff, K., & Yani, S. (2013). Biofuel Production from Catalytic Cracking of Palm Oil. World Applied Sciences Journal, 6.

Sonthalia, A., & Kumar, N. (2017). Hydroprocessed Vegetable Oil As A Fuel For Transportation Sector: A review. Journal of The Energy Institute, 1–17.

Subsadsana, M., & Ruangviriyachai, C. (2016). Effect of NiW Modified HZSM-5 and HY Zeolites on Hydrocracking Conversion of Crude Palm Oil to Liquid Hydrocarbons. Oriental Journal of Chemistry, 32(2), 839–844.

Tabatabaei, M., Aghbashlo, M., Dehhaghi, M., Panahi, H. K. S., Mollahosseini, A., Hosseini, M., & Soufiyan, M. M. (2019). Reactor Technologies for Biodiesel Production and Processing: A review. Progress in Energy and Combustion Science, 74, 239–303.

Vásquez, M. C., Silva, E. E., & Castillo, E. F. (2017). Hydrotreatment of Vegetable Oils: A Review of The Technologies and Its Developments for Jet Biofuel Production. Biomass and Bioenergy, 105, 197–206.

Vu, X. H., & Armbruster, U. (2018). Catalytic Cracking of Triglycerides Over Micro/Mesoporous Zeolitic Composites Prepared from ZSM-5 Precursors with Varying Aluminum Contents. Reac Kinet Mech Cat. 018-1415-z.

Wang, W.-C., Tao, L., Markham, J., Zhang, Y., Tan, E., Batan, L., … Biddy, M. (2016). Review of Biojet Fuel Conversion Technologies (No. NREL/TP--5100-66291, 1278318; p. NREL/TP--5100-66291, 1278318).

Wu, X., Jiang, P., Jin, F., Liu, J., Zhang, Y., Zhu, L., … Li, Q. (2017). Production of Jet Fuel Range Biofuels by Catalytic Transformation of Triglycerides Based Oils. Fuel, 188, 205–211.

Yubao, C., Yajie, H., Yongyan, Z., Liming, Z., Shunping, Y., Yanni, G., … 2. Kunming Institute of Precious Metals, Kunming 650106, Yunnan, China. (2017). Converting Rubber Seed Oil into Hydrocarbon Fuels via Supported Pd-Catalyst. International Journal of Agricultural and Biological Engineering, 10(6), 201–209.

Zaher, F., Gad, M. S., Aly, S. M., & Hamed, S. F. (2017). Catalytic Cracking of Vegetable Oils for Producing Biofuel. Egyptian Journal of Chemistry, 60(2), 291–300.

Zhao, X., Wei, L., Cheng, S., & Julson, J. (2017). Review of Heterogeneous Catalysts for Catalytically Upgrading Vegetable Oils into Hydrocarbon Biofuels. Catalysts, 7(12), 83.

Zhao, X., Wei, L., Cheng, S., Julson, J., Anderson, G., Muthukumarappan, K., & Qiu, C. (2016). Development of Hydrocarbon Biofuel from Sunflower seed and Sunflower meat Oils Over ZSM-5. Journal of Renewable and Sustainable Energy, 8(1), 013109.

Zheng, Q., Huo, L., Li, H., Mi, S., Li, X., Zhu, X., … Shen, B. (2017). Exploring Structural Features of USY Zeolite in The Catalytic Cracking of Jatropha Curcas L. Seed Oil Towards Higher Gasoline/Diesel Yield andLlower CO2 Emission. Fuel, 202, 563–571.

How to Cite
Laily, D. I., & Maharani, D. K. (2021). Artikel Review: Faktor yang Mempengaruhi Persen Biogasoline Minyak Nabati Menggunakan Katalis HZSM-5 dengan Metode Catalytic Cracking. Al-Kimia, 9(1), 89-102.
Literature Studies
Abstract viewed = 335 times