Potensi Senyawa Betalain pada Ekstrak Biji Binahong Berbatang Merah (Anredera cordifolia) sebagai Fotosensitizer Dye Sensitized Solar Cell (DSSC)

  • Nafisa Cahyani Universitas Negeri Surabaya
  • I Gusti Made Sanjaya Universitas Negeri Surabaya


Abstract: This study aims to examine the extract of red trunk binahong seed as a dye in Dye Sensitized Solar Cell (DSSC). (Anredera cordifolia) characterization was carried out by UV-Visible spectrophotometry and resulted in absorption at a wavelength of 537 nm, purification the extract of red trunk binahong seed was carried out by column chromatography using methanol: ethyl acetate as  solvent with ratio of 3: 2 and 10 fractions color were produced. The identification of compounds and functional groups were analyzed by FTIR which showed the presence of betalain derivatives, namely betanidine, betanine, and neobetanin. Molecular weight analysis was carried out by LC-MS and the molecular weight of betanidine was 386.3171. The voltage and current from the DSSC results were measured using  multimeter, the efficiency of the extract of red trunk binahong seed was 0.64% and the one that experienced a change in color to orange was 0.55%.

Keywords:, betalain, betanidine, betanine, DSSC, red trunk binahong


Download data is not yet available.


A.R.N. Laily, S. H. (2016). Poly (3-Dodecylthiophene)/Natural Dye Bulk Heterojunction. Procedia Chemistry, 2-9. doi 10.1016/j.proche.2016.03.003

Ahmed M. Ammar, H. S.-H. (2019). Dye-Sensitized Solar Cells (DSSCs) Based on Extracted Natural Dyes. Journal of Nanomaterials, 1-10. doi 10.1155/2019/1867271.

Ariza, M. J.-S. (2019). Optimizing a Simple Natural Dye Production Method for Dye-Sensitized Solar Cells: Examples for Betalain (Bougainvillea and Beetroot Extracts) and Anthocyanin Dyes. Applied Science, doi 10.3390/app9122515.

Aruna Singh, M. G. (2017). Optimizaton of extraction of betalain pigments from beta vulgaris peels by microwave pretreatment. IOP Conf. Series: Materials Science and Engineering, doi:10.1088/1757-899X/263/3/032004.

B. Y. Muryani, F. N. (2020). Effect of working electrode thickness using binahong leaves (Anredera cordifolia) dye to the efficiency of dye-sensitized solar cell (DSSC). AIP Conference Proceedings, doi 10.1063/5.0005688.

Carolina Betancourta, M. J.-B. (2017). Pigment composition and antioxidant capacity of betacyanins and betaxanthins fractions of Opuntia dillenii (Ker Gawl) Haw cactus fruit. Food Research International, doi 10.1016/j.foodres.2017.09.007.

Chuan-PeiLee, C.-T. K.-C. (2017). Use of organic materials in dye-sensitized solar cells. Materials today, Volume 20, Issue 5. doi 10.1016/j.mattod.2017.01.012.

Danladi Eli, M. A. (2016). Dye-Sensitized Solar Cells Using Natural Dyes Extracted from Roselle (Hibiscus Sabdariffa) Flowers and Pawpaw (Carica Papaya) Leaves as Sensitizers . Journal of Energy and Natural Resources , Vol. 5, No. 1.

F. Farabegoli, E. S. (2017). Betalains increase vitexin-2-O-xyloside cytotoxicity in CaCo-2 cancer cells. Food Chemistry, 356-364. doi 10.1016/j.foodchem.2016.09.112.

Fu-Quan Bai, W. L.-X. (2017). Theoretical Studies of Titanium Dioxide for Dye-Sensitized Solar Cell and Photocatalytic Reaction, in: Titan Dioxide. InTech, doi 10.5772/intechopen.68745.

Imen Belhadj Slimen, T. N. (2017). Chemical and Antioxidant Properties of Betalains. Journal of Agricultural and Food Chemistry, 65, 675−689. doi 10.1021/acs.jafc.6b04208.

J. Xu, J. Z. (2018). Manufacturing Solar Cells: Assembly and Packaging, in:Conveyor Belt Furn, Therm, Process. Springer International Publishing, 35-41.

Katarzyna Mikołajczyk-Bator, S. P. (2016). The Effect of Thermal Treatment on Antioxidant Capacity and Pigment Contents in Separated Betalain Fractions. Acta Sci. Pol. Technol. Aliment., 15(3), 257–265. doi 10.17306/J.AFS.2016.3.25.

Kenneth Obi, L. F. (2020). Preparation and performance of prickly pear (Opuntia phaeacantha) and mulberry (Morus rubra) dye-sensitized solar cells. Solar Energy, 312-320. doi 10.1016/j.solener.2020.08.006 .

Leonildo Delgadoa, B. F. (2020). Automated multistep column chromatography on ÄKTA pure system using in-line sample dilution. Separation and Purification Technology, doi10.1016/j.seppur.2020.116556.

Lucia Aztatzi-Rugerio, S. Y.-B.-C.-S.-L. (2019). Analysis of the degradation of betanin obtained from beetroot using Fourier transform infrared spectroscopy. J Food Science Technology , 3677–3686 doi.org/10.1007/s13197-019-03826-2.

M. Alejandra Guerrero-Rubio, S. H.-G.-H. (2018). Extension of life-span using a RNAi model and in vivo antioxidant effect of Opuntia fruit extracts and pure betalains in Caenorhabditis elegans. Food Chemistry , doi 10.1016/j.foodchem.2018.09.067.

María Jesús Cejudo-Bastante, N. H. (2016). Impact of pH and temperature on the colour and betalain content of Colombian yellow pitaya peel (Selenicereus megalanthus). Association of Food Scientists & Technologists (India), 2405–2413. doi 10.1007/s13197-016-2215-y.

Moh Moh Zin, C. B. (2020). Recovery of Phytochemicals via Electromagnetic Irradiation (Microwave-Assisted-Extraction): Betalain and Phenolic Compounds in Perspective. Journal Agricultural and Food Chemistry, doi:10.3390/foods9070918.

Nallamuthu Ananthi, M. S. (2019). Preparation and characterization of two dyesensitized solar cells using Acalypha Godseffia and Epipremnum Aureum dyes as sensitizers. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, doi 10.1080/15567036.2019.1604876.

Neha D. Desai, K. V. (2019). Development of dye sensitized TiO2 thin films for efficient energy. Elsevier, 1011-1013. doi 10.1016/j.jallcom.2019.03.246.

Neha Patni, S. G. (2020). Effect of using betalain, anthocyanin and chlorophyll dyes together as a sensitizer on enhancing the efficiency of dye-sensitized solar cell. International Journal of Energy Research, doi 10.1002/er.5752.

Norfatihah Mohd Adenam, N. A. (2020). Study of Beta vulgaris (Beetroot) Extraction in Polar Solvents as Photoabsorber in Dye-Sensitized Solar Cells Application. IOP Science, doi:10.1088/1755-1315/596/1/012014.

P Sanjay, K. D. (2019). Dye-Sensitized Solar Cells Using Natural Dye as Light-Harvesting Material Extracted From the Leaves of Peltophoroum Pterocarpum. Materials Today: Proceedings, doi 10.1016/j.matpr.2019.02.089.

Raja Ramamoorthy, N. R. (2016). Betalain and anthocyanin dye-sensitized solar cells. Springer Science, 929-941. doi 10.1007/s10800-016-0974-9.

Samanta PK, E. N. (2019). Opto-electronic properties of stable blue photosensitisers on a TiO2 anatase-101 surface for efficient dye-sensitised solar cells. Chem Phys Lett.

Sérgio S. de Jesus, G. F. (2019). Biodiesel purification by column chromatography and liquid-liquid extraction using green solvents. Fuel, 1123-1130. doi 10.1016/j.fuel.2018.08.107.

Suphawit Udomrungkhajornchai, I. J. (2019). Optimization of the TiO2 layer in DSSCs by a nonionic surfactant. Optik, doi 10.1016/j.ijleo.2019.163945.

Tomasz Sawicki, J. T. (2018). Profile and Content of Betalains in Plasma and Urine of Volunteers after Long-Term Exposure to Fermented Red Beet Juice. Journal of Agricultural and Food Chemistry, 10.1021/acs.jafc.8b00925.

Virginia Prieto-Santiago, M. M.-T. (2020). Relationship between color and betalain content in different thermally treated beetroot products. Journal of Food, Science, and Technology, doi 10.1007/s13197-020-04363-z.

Yohannes Mulugeta Hailu, M. T.-C. (2018). Effects of Terminal Donor Unit in Dyes with D–D–π–A Architecture on the Regeneration Mechanism in DSSCs: A Computational Study. Physical Chemistry Chemical Physics, doi 10.1039/C8CP03821J.

Yu Fu, J. S.-Y.-Y. (2020). Red Beetroot Betalains: Perspectives on Extraction, Processing, and Potential Health Benefits. Journal of Agricultural and Food Chemistry, doi 10.1021/acs.jafc.0c04241.

How to Cite
Cahyani, N., & Sanjaya, I. G. M. (2021). Potensi Senyawa Betalain pada Ekstrak Biji Binahong Berbatang Merah (Anredera cordifolia) sebagai Fotosensitizer Dye Sensitized Solar Cell (DSSC). Al-Kimia, 9(2), 103-114. https://doi.org/10.24252/al-kimia.v9i2.20610
Abstract viewed = 190 times