Current strategies in cationic liposomal vaccine development for anti-cancer therapy

Luis Castillo-Henríquez1*, Zacarias Pereira-Vega1, Mohammad Rizki Fadhil Pratama2, José Vega Baudrit3,4

1Laboratory of Physical Chemistry, Faculty of Pharmacy, University of Costa Rica
San José, Sabanilla, Costa Rica. 11501-2060
2Department of Pharmacy, Faculty of Health Science, Universitas Muhammadiyah Palangkaraya
Jl. RTA Milono, Pahanudur, Palangka Raya, Central Kalimantan, Indonesia. 73111
3National Nanotechnology Laboratory (LANOTEC), National Center for High Technology (CeNAT)
Calle, San José, 10109, Costa Rica, 1174-1200
4Laboratory of Polymers (POLIUNA), Chemistry School, National University of Costa Rica
Avenida 1, Calle 9 Heredia 86 Heredia, 40101, Costa Rica
*Email: luis.castillohenriquez@ucr.ac.cr

ABSTRACT. Nanomedicine is currently at the forefront of technology. Nanovaccines are a relevant development derived from this field and comprise nanoparticles ranging from 50-250 nm to deliver antigens and other immunomodulatory agents. Their formulation can include liposomes, which are widely known as safe and allow their engineering to be cationic, conferring a superior immunostimulatory effect. This promising strategy for vaccine delivery has gained interest in cancer as it provides higher targeting efficiency, increased antigen stability, prolonged circulation time, and enhanced uptake by antigen-presenting cells, mainly dendritic cells. Therefore, this minireview discusses recent research on cationic liposome-based vaccine delivery systems for anti-cancer therapy. Pubmed, Science Direct, and Google Scholar were screened for original and review papers published in the last ten years. The antigen association with the cationic nanoparticles either by electrostatic interactions or complementary coiled coil peptide pair strategy were found as the most promising strategies. The work also highlights the potential of this therapeutic platform for enhancing the T-cell immune response against cancer through mRNA-containing formulations for different routes of administration, providing a detailed physicochemical characterization of the reported nanosystems.

Keywords: Adjuvant; antigen-presenting cells; drug delivery; nanovaccines; vaccine delivery

INTRODUCTION

Nanovaccines are a new generation of vaccines containing nanoparticles of 50-250 nm size as carriers and/or adjuvants (Hayat & Darroudi, 2019), overcoming the known limitations of conventional subunit formulations (e.g., viral vector, attenuated organisms, proteins combined with adjuvants) (Yin et al., 2022). These systems exhibit higher targeting efficiency, increased antigen stability, prolonged circulation time, and remarkably, an enhanced uptake by the antigen-presenting cells (APCs), mainly dendritic cells (DCs), which ultimately activate naïve CD8+ and CD4+ T-cells (Heuts et al., 2018; Das & Ali, 2021). Noteworthy, liposomes, a well-known clinically safe type of nanoparticles, have been engineered to be cationic, which confers them a superior immunostimulatory effect (i.e., adjuvant role) compared to the neutral and anionic counterparts, and thus, representing a promising strategy for vaccine delivery in cancer. For instance, the positive charge facilitates the binding and uptake by APCs, enhancing antigen and drug delivery and increasing therapeutic efficacy and immune response. However, toxicity should be closely monitored due to the interaction with the negatively charged cell membrane (Du et al., 2017; Heuts et al., 2018).

Among their composition (Fig. 1), cationic liposomes contain positively charged lipids in their lipidic bilayer membrane, which are essential for the interaction with negatively charged biomolecules (e.g., DNA, RNA) to form the lipoplexes (Ewert et al., 2021). The mentioned lipids are usually synthetic with positively charged or ionizable functional groups. For instance, DOTAP,
DOPE, DOTMA, and DC-Chol stand out as some of the most widely used lipids for this kind of liposomes (Liu et al., 2020). Although these nanocarriers have been extensively explored in the delivery of several active pharmaceutical ingredients (APIs) (Akombaetwa et al., 2023; Sun et al., 2023), their capacity to encapsulate antigens within the aqueous core or lipid bilayers combined with the possibility of surface decoration and functionalization have turned the interest into them for vaccine development. Furthermore, the interaction with toll-like receptors (TLRs) expressed in APCs has been demonstrated to promote the production of cytokines and chemokines, leading to the recruitment and activation of T-cells and B-cells (Ponti et al., 2021).

Despite liposomal vaccines jumping into the public eye due to the COVID-19 formulations developed by different manufacturers, studies have reported that the effectiveness decreases six months after complete vaccination (Feikin et al., 2022). However, other approaches may rely on this platform, modifying it to target cancer cells and provide more extended immune stimulation to fight the disease. Therefore, this minireview aims to critically analyze 32 scientific papers on cationic liposome-based vaccine delivery systems for anti-cancer therapy published in the last ten years, discussing their characterization, mode of action, the uptake by DCs, and the influence on T-cell immune response (Fig. 2). To the best of our knowledge, this paper presents a unique brief overview of novel strategies with the potential to be extensively exploited in the following years, being antigen association by electrostatic interactions and the complementary coiled coil peptide pair, which can also be suitable for mRNA delivery.

MATERIALS AND METHODS

Pubmed, Science Direct, and Google Scholar were screened for original and review papers published in the last ten years using the following search strategy: Cationic AND liposomes AND vaccines, nanovaccine AND anti-cancer AND therapy. For the study selection, the publications were screened by title and abstract. Literature concerning topics other than cationic liposomes for anti-cancer vaccines or irrelevant for the scoping of this minireview were excluded, as well as duplicated papers and articles written in other languages than English.

RESULTS AND DISCUSSION

Antigen association strategies. Cationic liposomes have been explored with great interest due to the ease of incorporating antigens through different strategies. Antigen association with this type of nanocarrier through electrostatic interactions has been considered one of the most straightforward
procedures (Li et al., 2022b). Following this premise, the approach by Su et al. (2021), describes self-assembling hybrid polymer-lipid cationic liposomes utility for melanoma immunotherapy, composed of PEAD cationic polymer, egg yolk lecithin, and cholesterol (Z-ave: 86.32 ± 0.60, PDI: 0.29, ζP: ~40 mV). The nanovaccine comprises a combined delivery of 1-methyl-tryptophan (1-MT) and the inhibitor of indoleamine-2,3-dioxygenase (IDO) (i.e., an immune checkpoint). Additionally, two anionic immunomodulators were included: An antigen made by the conjugation of D8 peptide with the SIINFEKL melanoma-specific epitope, and a potent TLR-9 agonist (CpG). The physicochemical characterization denoted a significant increase in particle size (453.0 ± 3.8), a relatively monodisperse system (PDI: 0.33), and a negative surface charge (ζP: ~-5 mV) conferred by the anionic antigen and CpG.

Nevertheless, electrostatic approaches for liposome-based vaccine development have also resulted in low antigen loading, accelerated desorption under physiological conditions, and loss during liposome purification (Hamborg et al., 2014; Tretiakova & Vodovozova, 2022). Given the previous, another approach, reported by Leboux et al. (2021) presents an alternative method of antigen association to cationic liposomes. The innovation consists of a lipid-based strategy previously used for targeting cells (Yang et al., 2016; Kong et al., 2020), comprising a complementary coiled coil peptide pair upon the interaction of peptide K (pepK) and peptide E (pepE). The first peptide, coupled to cholesterol, was encapsulated in the lipid bilayer, whereas pepE was covalently linked to the restricted epitope of ovalbumin OVA323 (pepE-OVA323). The liposomes containing DSPC, DOTAP, and cholesterol were prepared by the dehydration-rehydration method and presented a hydrodynamic diameter after functionalization of 176.3 ± 14.4 nm, PDI of 0.071 ± 0.047, and ζP of 44.9 ± 6.2 mV.

In terms of cell studies, hybrid liposomes are usually studied using bone marrow dendritic cells (BMDCs), displaying non-toxic effects when the liposomes’ concentration is below 40 mg.mL⁻¹ (Li et al., 2022a). No pathological abnormalities in major organs are found when administered subcutaneously in mice, meaning good biocompatibility (Knudsen et al., 2015). On the other hand, functionalized liposomes seem to present higher association efficiencies with the antigens upon simple mixing, which has led to the hypothesis of an improved uptake by BMDCs (Wang et al., 2016). Indeed, several works have reported an antigen uptake of almost 100% when associated with functionalized liposomes (Tada et al., 2015; Varypataki et al., 2015). Furthermore, biodistribution studies in zebrafish have supported this finding, given that a high percentage of the functionalized signal is usually co-localized with the antigen, in contrast to the low percentages provided by the association with non-functionalized liposomes (Arias-Alpizar et al., 2021). The latter represents the foundation for a potential translation to in vivo complex tissues to increase antigen presentation efficiency in cancer patients (Leboux et al., 2021).

Although coiled-coil constructs have been reported to enhance by 18-fold the immunogenicity of the antigen, thereby, inducing a higher CD4⁺ T-cell activation after immunization, these vaccines lack an immune potentiating effect for CD8⁺ T-cells when evaluated using BMDCs (Neefjes et al., 2011). Liposomes inability to endosomal escape implies that unbound antigen molecules are responsible for T-cell proliferation (Gao et al., 2017; Lee et al., 2022). In contrast to this anomalous outcome, hybrid liposome vaccines have shown a great delivered amount of antigen to the cytoplasm of DCs, proving the system’s capability to escape from the lysosomes, and promoting a strong antigen-specific CD8⁺ T-cell response that could kill melanoma tumor cells in vivo (Cebrian et al., 2011). Additionally, this type of formulation enables the expression of CD86 surface markers inducing BMDCs maturation and causing an increase in the recruitment of CD8⁺ and CD4⁺ T-cells infiltrated in the tumor (Su et al., 2021).

mRNA delivery. Aside from peptides and other antigens, cationic liposomes have also been designed as nanocarriers and adjuvants for the delivery of mRNA in cancer vaccines, as presented in Table 1. These formulations provide different benefits compared to peptide-based preparations such as direct mixing with the negatively charged mRNA, and simultaneous encoding of multiple antigen
sequences (Heuts et al., 2018). The previous is illustrated in the research performed by Zhang et al. (2020) and Mai et al. (2020) for treating lung carcinoma. The first group focused on the development of a potentially universal mRNA vaccine composed of DOTAP liposomes (Z-ave: 90.74 ± 10.21 nm, PDI: 0.213, ζP: 47.56 ± 3.45 mV) combined with a novel cholesterol-modified cation peptide (DP7-C) to form DOTAP/DP7 liposomes (Z-ave: 100.23 ± 7.50 nm, PDI: 0.231, ζP: 53.02 ± 5.51 mV) by the thin-film dispersion method. The incubation with in vitro transcription (IVT) mRNA caused a further increase in particle size (130.45 ± 9.32 nm) without significantly affecting the PDI (0.201), and logically, reducing the ζP (34.67 ± 7.45 mV).

Table 1. Recent cationic liposomal vaccine formulations for mRNA delivery against cancer

<table>
<thead>
<tr>
<th>Vaccine composition</th>
<th>Model</th>
<th>Characterization</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-Autologous total tumor mRNA</td>
<td>Adult glioblastoma</td>
<td>Data not available, clinical trial in Phase I</td>
<td>(University of Florida, 2023)</td>
</tr>
<tr>
<td>-pp65 full length lysosomal associated membrane protein (LAMP) -DOTAP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-Luciferase-mRNA and synthetic modified tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-mRNA -Polyethylenimine cationic polymer</td>
<td>C-57 mice in vivo</td>
<td>18% transfection after 24 h</td>
<td>(Peng et al., 2022)</td>
</tr>
<tr>
<td></td>
<td>Glioblastoma</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Mai et al. (2020) work provides a new approach, adapting the cationic liposome mRNA vaccine technology for intranasal administration. The group focused on the delivery of the antigen to the nasal-associated lymphoid tissue to promote an immune response against pulmonary cancer. The cationic liposomes were developed using DOTAP, cholestereol, and DSPE-PEG2000 by the thin film hydration method. Remarkably, protamine was used to condensate mRNA-encoded cytokeratin 19 (i.e., a widely distributed protein on epithelial cell membranes and present in lung cancer cells) into nanosized complexes to have a complete encapsulation in the nanoparticles and to protect it from nuclease degradation. Therefore, a complete encapsulation was achieved at a liposome/mRNA/protamine 10:1:1 molar ratio (Z-ave: 170 nm, PDI: 0.180, ζP: 10 mV).

To overcome the low immune response that has characterized mRNA vaccines, different strategies can be applied to induce higher intracellular delivery (Korsholm et al., 2014; Chaudhary et al., 2021). For instance, DOTAP/DP7-C liposomes enhance mRNA transfection into DCs owing to the penetrating properties of DP7-C, which has proved to be more efficient and less cytotoxic than some commercially available gene transfection reagents. In addition, DP7-C performs as an immune adjuvant promoting a higher maturation of DCs and inducing the production of CD103+ DC, thus contributing to antigen presentation. Lewis lung carcinoma LL2 cells exposed to these cationic liposomes have revealed their greater tumor growth inhibition compared to DOTAP/mRNA liposomes. Noteworthy, the DP7-C-modified liposomes displayed a higher ability for endosomal escape through the clathrin and caveolin endocytosis pathways (Zhang et al., 2020).

However, increasing the immune response through the nasal mucosa presents several challenges, where low antigen uptake by the epithelial cells and their incapacity for prolonged effect demand higher consideration (Tada et al., 2015). Some research groups have been able to improve this situation by immunizing tumor-bearing mice with their intranasal vaccines once a week for several weeks. Most of these studies reported no tumor growth, suggesting the potential use of these vaccines as novel antitumor therapies (Pardi et al., 2018). Moreover, CD4+ and CD8+ T-cell recruitment are also significantly incremented as DCs maturation and antigen uptake by these cells is increased compared to other preparations, such as the protamine-mRNA complex and plain liposomes-mRNA vaccines (Cong et al., 2020). These encouraging results are derived from the mRNA protection by the nanocarrier upon exposure to endosome nucleases, which leads to enhanced expression efficiency (Ahmad et al., 2021).
CONCLUSION

The promising approaches discussed here highlight the potential of cationic liposomes for anticancer vaccine development. The reviewed studies comprise formulations considered as low toxic for DCs, simple to prepare, and suitable for different antigens. Additionally, their dual function as carriers and adjuvants makes them an outstanding platform for vaccine delivery, enhancing the immune cell response by antigen-specific T-cells and promoting a pro-inflammatory response via different cytokines and chemokines. However, it is also necessary to draw attention to different aspects not addressed in these works, such as formulation scale-up, the influence of the protein corona, and a better understanding of the immunogenic response for a proper translation from bench-top to bedside.

ACKNOWLEDGEMENTS

L.C.H. is funded by the Education, Audiovisual and Culture Executive Agency (EACEA) of the European Commission in the field of the Erasmus Mundus Joint Master Degree (EMJMD) of Nanomedicine for Drug Delivery (NANOMED). L.C.H. is also grateful to the International Affairs and Foreign Cooperation Office (OAICE) of the University of Costa Rica for the granted scholarship (contract No. OAICE-13-2022). Figures were created with Biorender.com under LANOTEC’s license.

REFERENCES

