

Plant diversity and its conservation status in the Gunung Pujut Ancient Mosque Area, Lombok Island, Indonesia

Slamet Mardiyanto Rahayu^{1*}, Nurlailah Mappanganro², Luis Da Costa³, Luchman Hakim⁴, Jati Batoro⁴, Kurniasih Sukenti⁵

¹Department of Biology, Faculty of Mathematic and Natural Sciences, Universitas Islam Al-Azhar Jl. Unizar No. 20 Mataram, West Nusa Tenggara, Indonesia. 83232 *Email: slamet.mardiyantorahayu84@gmail.com

²Department of Agroecotechnology, Faculty of Agriculture, Universitas Islam Al-Azhar

Jl. Unizar No. 20 Mataram, West Nusa Tenggara, Indonesia. 83232

³Department of Biology Education, Faculty of Education, Arts and Humanities, Universidade Nacional Timor Lorosa'e Av. Cidade de Lisboa, Díli, Timor-Leste. 270

⁴Department of Biology, Faculty of Mathematic and Natural Sciences, Universitas Brawijaya Jl. Veteran Malang, East Java, Indonesia. 65145

⁵Department of Biology, Faculty of Mathematic and Natural Sciences, Universitas Mataram Jl. Majapahit No. 62 Mataram, West Nusa Tenggara, Indonesia. 83115

ABSTRACT. Gunung Pujut Ancient Mosque is one of the cultural heritages in Lombok Island. This study aims to determine the diversity and conservation status of plants in the Gunung Pujut Ancient Mosque area. The research was conducted through direct observation, calculation of diversity index and dominance index, and tracing the conservation status of plant species. There are 29 families, 31 genera, and 34 plant species in the Gunung Pujut Ancient Mosque area. This is a stable ecosystem because it has a high diversity of plants. This shows that the cultural heritage area of the Gunung Pujut Ancient Mosque is a suitable habitat for the growth and development of various plant species and plays a role in supporting biodiversity conservation. There is no ecological pressure in this area because it has low plant dominance index.

Keywords: cultural heritage; plant species; religious tourism; sacred site, Sasak tribe

Article History: Received 23 May 2025; Received in revised form 5 August 2025; Accepted 8 August 2025; Available online 31 August 2025.

How to Cite This Article: Rahayu SM, Mappanganro N, Da Costa L, Hakim L, Batoro J, Sukenti K. 2024. Plant diversity and its conservation status in the Gunung Pujut Ancient Mosque Area, Lombok Island, Indonesia. Biogenesis: Jurnal Ilmiah Biologi. vol 12(2): 132-137. doi: https://doi.org/10.24252/bio.v12i2.57038.

INTRODUCTION

Archaeological site is a spot (or locus) where remnants of human activity from the past can be found, encompassing elements or components with cultural heritage value, where archaeology has contributed to the discovery, recognition, and/or research of these cultural values (Sullivan & Mackay, 2012). According to Nilson & Thorell (2018), UNESCO defined cultural heritage is the legacy of tangible artifacts and intangible characteristics of a group or culture that are passed down from previous generations, preserved in the present, and given for the benefit of following generations. The older structures, particularly those that have been classified as cultural heritage monuments, are incredibly prone to harm (Rilatupa & Mangani, 2020), such as Gunung Pujut Ancient Mosque, so it needs to be preserved.

Gunung Pujut Ancient Mosque is one of the cultural heritages in Lombok Island. Lombok is an island in the Lesser Sunda Islands chains, located between Bali and Sumbawa. Geographically, Lombok is in West Nusa Tenggara Province, Indonesia (Central Bureau of Statistics for West Nusa Tenggara Province, 2024). Sasak tribe is the original people of Lombok Island, including those who inhabit the area around the Gunung Pujut Ancient Mosque. Gunung Pujut Ancient Mosque was founded in 1008 H = Caka year 1509 = 1587 AD, around the 17th century AD when the spread of Islam in Lombok Island was occured. Currently, this mosque is no longer used as its function. This mosque is part of the cultural veil. However, this site is considered to be a dead monument. Gunung Pujut Ancient Mosque building shows the existence of local wisdom in the relationship between humans and plants. The function of the Gunung Pujut Ancient Mosque reflects the religious aspects

and traditional values. This needs to be studied so that local knowledge and culture could be maintained.

Cultural heritage is a form of cultural landscape. According to Shen & Chou (2021), the interaction between community and the natural environment creates a cultural landscape. Today, many cultural landscapes are under threat (Rossler & Lin, 2018). Pressures and threats to the existence of cultural landscapes are getting higher, including rapid development, conversion of cultural landscapes into other forms of use, deforestation, exploitation of natural resources, socio-ecological changes, loss of components of the cultural landscape, decreasing of the younger generation understanding and appreciation of the cultural landscape, and loss of knowledge about the biological component in cultural landscape (Jung & Ryu, 2015; Rahmi & Setiawan 2021; Pora et al., 2022).

Therefore, it is necessary to make efforts to preserve cultural heritage. According to Malik *et al.* (2023) cultural heritage helps preserve people's history and traditions, providing a sense of identity for present and future generations. This aims to ensure a balance of interests, protect and enhance resources, and, meet the needs of all parties involved (current and future) (Vukovic & Ruzicic, 2017). Several studies have been conducted at the Gunung Pujut Ancient Mosque, including: Analysis of the Potential of the Gunung Pujut Ancient Mosque as a Cultural Tourism Destination (Rahman *et al.*, 2024), Conversion of the Function of the Gunung Pujut Ancient Mosque in the Sengkol Village Community, Pujut District, Central Lombok Regency (Darmurtika *et al.*, 2021), Accuracy of the Qibla Direction of the Bayan Beleq Ancient Mosque and the Gunung Pujut Ancient Mosque on the Island of a Thousand Mosques (Wafiroh, 2019).

Plants are a crucial component of cultural heritage because they provide various benefits, including site preservation, aesthetic enhancement, and supporting the livelihoods of surrounding communities. Appropriate plant arrangement can enhance the sustainability of cultural heritage structures and buildings and add value to the area. However, until now there has been no study that focuses on the diversity and conservation status of plant species in the Gunung Pujut Ancient Mosque area. Therefore, this study aims to determine the diversity and conservation status of plant species in the Gunung Pujut Ancient Mosque area. The implications of this study include providing essential baseline data for the sustainable management of cultural landscapes, supporting environmental and cultural heritage conservation efforts, and encouraging local community involvement in the preservation of plant species with ecological and historical value. The findings of this research may also serve as a reference for vegetation restoration planning, ecotourism development, and biodiversity-based cultural site protection policies.

MATERIALS AND METHODS

This research was conducted in the Gunung Pujut Ancient Mosque cultural heritage area, Sengkol Village, Pujut District, Central Lombok Regency, West Nusa Tenggara Province, Indonesia. Research through field observation. Observation in data collection was conducted through systematically recording research objects. Field observations were made to obtain a direct picture of the building structure, plant used and plant diversity. Plant identification referred to several identification books, including the following: Van Steenis (2008), Henderson (2009), and Setyawati et al. (2015)). Scientific names of plants are based on the International Plant Names Index (2025).

The plant diversity index and dominance index were calculated in this study. The Shannon-Wienner diversity index was utilized for the analysis of plant diversity.

$$H' = -\Sigma Pi ln Pi$$

Where H' = Shannon-Wienner diversity index, Pi = Proportion of the number individuals of a plant species (ni/N), ni = abundance of a plant species, N = total abundance of all plant species. Results of Shannon Wiener diversity index calculation should be categorized below (Odum & Barrett, 2009), there are three levels of biodiversity: high (H'>3), medium ($1 \le H' \le 3$), and low (H'<1).

Dominance is analyzed using Simpson's Dominance Index.

$$C = \sum (Pi)^2$$

Where C = Simpson dominance index, Pi = Proportion of the number individuals of a plant species (ni/N). According to Odum & Barrett (2009) that the range of Dominance index values (C) is between 0-1. If the Dominance index value (C) is close to 0, it means that there are no dominant species, but if the Dominance index value (C) is close to 1, there are dominant species.

The plants that have been identified are then tabulated including families, vernacular names, scientific name, and conservation status. These various data were then analyzed using descriptive and qualitative approaches.

RESULTS AND DISCUSSION

Plant diversity in the area of Gunung Pujut Ancient Mosque. In the outside of the Gunung Pujut Ancient Mosque building (Fig. 1), there are various plant species, as seen in Table 1.

Fig. 1. The outside of the Gunung Pujut Ancient Mosque

Table 1. Plants species in the area of Gunung Pujut Ancient Mosque

Family	Species	Vernacular Name	Conservation Status
Acanthaceae	Justicia gendarussa Burm.f.	Gandarusa	Not Evaluated
Adoxaceae	Viburnum lutescens Blume.	Viburnum	Least Concern
Annonaceae	Cananga odorata (Lam.) Hook.f. & Thomson	Kembang Sandat	Least Concern
Apocynaceae	Plumeria alba L.	Jepun	Least Concern
Araceae	Amorphophallus paeoniifolius (Dennst.) Nicolson	Gawok	Least Concern
Araliaceae	Polyscias fruticosa (L.) Harms	Policias	Not Evaluated
Araliaceae	Polyscias scutellaria (Burm.f.) Fosberg	Mangkokan	Least Concern
Arecaceae	Arenga pinnata (Wurmb) Merr.	Enau	Least Concern
Asteraceae	Conyza sumatrensis (Retz.) E. Walker	Pupak	Not Evaluated
Bignoniaceae	Bignonia capreolata L.	Anggur silang	Not Evaluated
Caricaceae	Carica papaya L.	Gedang	Data Deficient
Clusiaceae	Calophyllum inophyllum L.	Nyamplung	Least Concern
Compositae	Cosmos sulphureus Cav.	Kenikir Sulfur	Not Evaluated
Cornaceae	Nyssa javanica (Blume) Wangerin	Hirung, Waru	Not Evaluated
		gading	
Dioscoreaceae	Dioscorea esculenta L.	Gembili	Not Evaluated
Euphorbiaceae	Euphorbia neriifolia L.	Euforbia	Least Concern
Fabaceae	Leucaena leucocephala (Lam.) De Wit	Seputre	Least Concern
Fabaceae	Tamarindus indica L.	Bagek	Least Concern

Leguminosae	Phaseolus vulgaris L.	Buncis	Least Concern
Malvaceae	Ceiba pentandra (L.) Gaertn.	Kapuk Randu	Least Concern
Moraceae	Artocarpus heterophyllus Lam.	Nangke	Not Evaluated
Moraceae	Ficus benjamina L.	Bunut	Least Concern
Moraceae	Ficus virens Aiton	Bunut	Least Concern
Oleaceae	Jasminum sambac (L.) Aiton	Melati	Not Evaluated
Phytolaccaceae	Petiveria alliacea L.	Singawalang	Not Evaluated
Piperaceae	Piper betle L.	Lekok	Not Evaluated
Piperaceae	Piper umbellatum L.	Lekok-lekoan	Not Evaluated
Poaceae	Bambusa vulgaris Schrad.	Treng Aur	Not Evaluated
Portulacaceae	Portulaca grandiflora Hook.	Krokot Mawar	Not Evaluated
Salicaceae	Flacourtia jangomas (Lour.) Raeusch.	Kerukup	Not Evaluated
Sapindaceae	Schleichera oleosa (Lour.)	Kesambik	Least Concern
Solanaceae	Capsicum frutescens L.	Sebie Kodek	Least Concern
Verbenaceae	Duranta erecta L.	Sinyo Nakal	Least Concern
Zingiberaceae	Hedychium gardnerianum Sheppard ex Ker-Gawl	Jae Lili	Not Evaluated

In the outside of the Gunung Pujut Ancient Mosque building, there are 29 families, 31 genera, and 34 species (Fig. 2). Based on the analysis it can be seen that the plants in the area of the Gunung Pujut Ancient Mosque have a high diversity index (3,173). According to Odum & Barrett (2009) an ecosystem's stability is similar with diversity. An ecosystem's condition is stable when its diversity is relatively high (Odum & Barrett, 2009). This means that the environmental condition of Gunung Pujut Ancient Mosque is stable. This shows that the cultural heritage area of the Gunung Pujut Ancient Mosque is a suitable habitat for the growth and development of various plant species and plays a role in supporting biodiversity conservation. According to Hakim (2014), conservation is the act of using resources in a sustainable manner. Conservation is protecting species, studying and using natural and biological resources wisely. Conservation is currently an important issue for the world community because it is one of the hopes in preserving global biodiversity for human life in the future (Hakim, 2014). Based on research by the IUCN, the conservation status of plants in the Gunung Pujut Ancient Mosque area falls into three categories: 51.4% are classified as Least Concern; 2.9% are Data Deficient; and 45.7% are Not Evaluated.

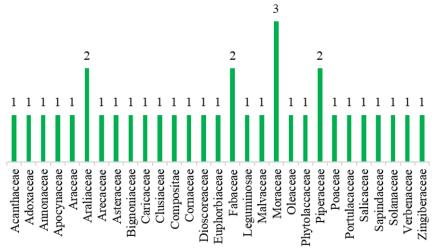


Fig. 2. Number of species of each family

Dominance index range between 0-1. Dominance index categories according to Ludwig & Reynold (1988), to be specific: low dominance $(0 < C \le 0.5)$, moderate dominance $(0.5 < C \le 0.75)$, and high dominance $(0.75 < C \le 1,0)$. Based on the Simpson dominance index analysis, the environment of Gunung Pujut Ancient Mosque has a low plant dominance index (0.065). This

indicates that there is no species that dominate other species in an extreme, that the environment is stable, and that there is no ecological pressure.

CONCLUSION

Gunung Pujut Ancient Mosque has a distinctive building structure as a local identity for the Sasak people. There are 29 families, 31 genera, and 34 plant species in the Gunung Pujut Ancient Mosque area. This area has a high diversity of plants. This shows the stability of the ecosystem and there is no ecological pressure on Gunung Pujut Ancient Mosque area.

REFERENCES

- Central Bureau of Statistics for West Nusa Tenggara Province. 2024. West Nusa Tenggara Province in Figures 2024. Mataram: Central Bureau of Statistics for West Nusa Tenggara Province.
- Darmurtika LA, Suyasa IM, Bilal AI, Mandala H. 2021. Alih fungsi Masjid Kuno Gunung Pujut pada Masyarakat Desa Sengkol Kecamatan Pujut Kabupaten Lombok Tengah. *Jurnal Ilmiah Telaah*. vol 6(2): 116–128. doi: https://doi.org/10.31764/telaah.v6i2.5474.
- Escamilla EZ, Habert G, Daza JFC, Archilla HF, Fernandez JSE, Trujillo D. 2018. Industrial or traditional bamboo construction? Comparative life cycle assessment (LCA) of bamboo-based buildings. *Sustainability*. vol 10(9): 3096. doi: https://doi.org/10.3390/su10093096.
- Escamilla EZ, Habert G, Wohlmuth E. 2016. When CO₂ counts: Sustainability assessment of industrialized bamboo as an alternative for social housing programs in the Philippines. *Building and Environment*. vol 103: 44–53. doi: https://doi.org/10.1016/j.buildenv.2016.04.003.
- Hakim L. 2014. Ethnobotany and homegarden management: Food security, health, and agrotourism. Malang: Selaras.
- Hakim L. 2017. Cultural landscape preservation and ecotourism development in Blambangan biosphere reserve, East Java. In: Landscape Ecology for Sustainable Society. Tokyo: Springer International Publishing. doi: https://doi.org/10.1007/978-3-319-74328-8 21.
- Henderson A. 2009. Palms of Southern Asia. New Jersey: Princetown University Press.
- International Plant Names Index. 2025. International Plant Names Index. Kew: Royal Botanic Gardens.
- Juliana, Parani R, Sitorus NIB, Pramono R, Maleachi S. 2021. Study of community based tourism in the district West Java. *International Journal of Sustainable Development and Planning*. vol 16(2): 277–285. doi: https://doi.org/10.18280/ijsdp.160207.
- Jung HJ, Ryu JH. 2015. Sustaining a Korean traditional rural landscape in the context of cultural landscape. *Sustainability*. vol 7(8): 11213–11239. doi: https://doi.org/10.3390/su70811213.
- Kikuchi Y, Sasaki Y, Yoshino H, Okahashi J, Yoshida M, Inaba N. 2014. Local visions of the landscape: Participatory photographic survey of the world heritage site, the rice terraces of the Philippine Cordilleras. *Landscape Research*. vol 39(4): 387–401.
- Ludwig JA, Reynolds JF. 1988. *Statistical ecology: A primer methods and computing*. New York: John Wiley and Sons. Malik ZUA, Waheed T, Akhter SS, Kasusar Y, Shabbir S, Ismail R, Arif MB, Fazeel. 2023. The importance of heritage conservation, preservation, and restoration in Pakistan. *Journal of Positive School Psychology*. vol 7(2): 227–239.
- Neto JAG, Barbosa NP, Beraldo AL, de Melo AB. 2021. Physical and mechanical properties of the Bambusa vulgaris as construction material. *Engenharia Agricola*. vol 41(2): 119–126. doi: https://doi.org/10.1590/1809-4430-Eng.Agric.v41n2p119-126/2021.
- Nilson T, Thorell K. 2018. *Cultural heritage preservation: The past, the present and the future*. Halmstad: Halmstad University Press.
- Odum EP, Barrett GW. 2009. Fundamentals of Ecology. 5th ed. Melbourne: Cengage Learning.
- Pora MP, Setyabudi I, Alfian R. 2022. Study of architecture and cultural landscape of the Dhawe Tribe, East Nusa Tenggara. *Local Wisdom*. vol 14(1): 1–17. doi: https://doi.org/10.26905/lw.v14i2.6226.
- Rahman RA, Rumba, Supardi. 2024. Analisis Potensi Masjid Kuno Gunung Pujut Sebagai Destinasi Wisata Budaya. *Economics and Digital Business Review.* vol 5(2): 987–992. doi: https://doi.org/10.37531/ecotal.v5i2.1330.
- Rahmi DH, Setiawan B. 2021. Selokan Mataram in Yogyakarta as a cultural landscape: Heritage values and pressures. *IOP Conference Series: Earth and Environmental Science*. vol 879: 012012. doi: https://doi.org/10.1088/1755-1315/879/1/012012.
- Rilatupa J, Mangani KS. 2020. Forensic analysis of cultural heritage building maintenance. *Journal of Southwest Jiaotong University*. vol 55(4): 1–9. doi: https://doi.org/10.35741/issn.0258-2724.55.4.42.
- Rossler M, Lin CH. 2018. Cultural landscape in world heritage conservation and cultural landscape conservation challenges in Asia. *Built Heritage*. vol 2: 3–26. doi: https://doi.org/10.1186/BF03545707.
- Setyawati T, Narulita S, Bahri IP, Raharjo GT. 2015. *A guide book to invasive alien plant species in Indonesia*. Bogor: Research, Development and Innovation Agency, Ministry of Environment and Forestry of Indonesia.

- Shen J, Chou R. 2021. Cultural landscape development integrated with rural revitalization: A case study of Songkou Ancient Town. *Land.* vol 10(4): 406. doi: https://doi.org/10.3390/land10040406.
- Sullivan S, Mackay R. 2012. *Archaeological sites: Conservation and management*. Los Angeles: The Getty Conservation Institute.
- Van Steenis CGGJ. 2008. Flora for schools. Jakarta: Penebar Swadaya.
- Vukovic P, Ruzicic MM. 2017. Potentials of upper Danube region in the Republic of Serbia for sustainable tourism development. In: *Green Economy in the Western Balkans*: 211–240. doi: https://doi.org/10.1108/978-1-78714-499-620171008.
- Wafiroh A. 2019. Akurasi Arah Kiblat Masjid Kuno Bayan Beleq dan Masjid Kuno Gunung Pujut di Pulau Seribu Masjid. *Nurani*. vol 18(2): 161–176. doi: https://doi.org/10.19109/nurani.v18i2.2775.