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Abstract 

This study investigates CNN optimization for classifying AI-generated images. 

Using the CIFAKE dataset (60,000 real and 60,000 AI-generated images), we 

evaluated four CNN configurations with varying complexity and four optimization 

algorithms through 5-fold cross-validation. Our findings show Configuration 4 (4 

Conv, 2 MaxPool) with Adam optimizer achieved the highest validation accuracy 

(0.8368±0.0135). Adam demonstrated consistent performance across architectures, 

while SGD showed strong but variable results improving with model complexity. 

Adagrad and Adadelta consistently underperformed. The final model achieved 

85.28% test accuracy with balanced precision (0.8531) and recall (0.8528). Results 

indicate more complex architectures combined with adaptive optimizers like Adam 

provide superior performance for AI-generated image classification, with the 

balance between model complexity and optimizer selection being crucial. The 

consistent performance across real and fake categories demonstrates this approach's 

robustness for deepfake detection applications. 

Keywords: CIFAKE Dataset, Convolutional Neural Network, Image 

Classification, K-Fold Cross-Validation, Optimization Algorithms 

1. INTRODUCTION 

The rapid development of AI technology has enabled the creation of highly 

realistic images, posing new challenges in the field of image classification and 

verification. The proliferation of AI-generated content raises significant concerns 

regarding misinformation, digital forgery, and unauthorized content creation 

(LeCun et al., 2015). Convolutional Neural Networks (CNNs) have proven highly 

effective in image processing tasks, but their optimization for detecting AI-

generated images requires further investigation into architectural configurations and 

training methodologies (Guera and Delp, 2018). 

The detection of AI-generated content has been approached through various 

methodologies, from statistical pattern analysis of synthetic facial features (Jaiswal 

et al., 2022) to deep learning techniques. While pattern-based approaches offer 

interpretability benefits, neural network approaches can potentially capture more 

subtle artifacts across diverse AI generation techniques. 
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This study comprehensively evaluates the performance of various CNN 

architectures in classifying AI-generated images. We utilize the CIFAKE dataset, 

which contains 60,000 real photographs from the CIFAR-10 dataset and 60,000 AI-

generated images created using Stable Diffusion (Croce et al., 2022). This large-

scale, balanced dataset provides an ideal foundation for robust evaluation of CNN 

performance in distinguishing between authentic and AI-generated content. Each 

image is sized at 64×64 pixels, offering sufficient detail for meaningful feature 

extraction while maintaining computational efficiency. 

To ensure methodological rigor and statistical validity, we implement 5-fold 

cross-validation across all experiments. This approach partitions the data into five 

equal folds, with each fold serving as validation data once while the remaining folds 

form the training set. This methodology substantially reduces the impact of data 

partitioning variability, providing more reliable performance metrics compared to 

single train-test splits (Kohavi, 1995). 

The main contributions of this research include: 

1. Comprehensive evaluation of four different CNN configurations with 

varying complexity, demonstrating that higher architectural complexity 

(Configuration 4 with 4 convolutional layers) achieves optimal performance 

for AI-generated image detection. 

2. Rigorous comparison of four popular optimization algorithms (SGD, Adam, 

Adagrad, and Adadelta) across all configurations, revealing Adam's 

consistent superiority and the variable effectiveness of other optimizers 

depending on model complexity. 

3. Evidence of the interplay between architectural complexity and optimizer 

selection, indicating that both factors significantly influence model 

performance in AI-generated image classification. 

4. Practical insights into optimal CNN design principles for AI-generated 

content detection, supported by robust statistical validation through k-fold 

cross-validation. 

Our CNN-based approach complements alternative detection methods such 

as statistical techniques based on Benford's law, which have demonstrated 

effectiveness in identifying GAN-generated images by analyzing pixel value 

distributions (Bonettini et al., 2020). While statistical approaches offer 

computational efficiency, our CNN methodology focuses on feature learning 

capabilities that can potentially better adapt to evolving AI generation techniques. 

The results of this study provide valuable guidance for developing more 

accurate and efficient image classification systems, particularly in the context of 

deepfake detection and image authenticity verification systems (Das et al., 2021; 

Hao et al., 2022). As generative AI technologies continue to advance in capabilities 

and accessibility, the need for reliable detection methods becomes increasingly 

critical for maintaining digital media integrity and trust. 

2. RESEARCH METHODOLOGY 

This study employs a comprehensive experimental approach to evaluate the 

performance of various Convolutional Neural Network (CNN) architectures for AI-

generated image classification. The methodology encompasses several key 
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components, including dataset preparation, k-fold cross-validation, model 

architecture design, and robust evaluation procedures (Das et al., 2021). 

2.1. Dataset 

The study utilizes the CIFAKE dataset, which contains 60,000 real 

photographs from the CIFAR-10 dataset and 60,000 AI-generated images created 

using Stable Diffusion (Croce et al., 2022). Each image has consistent dimensions 

of 64×64 pixels in RGB format. The dataset is publicly available at 

https://www.kaggle.com/datasets/birdy654/cifake-real-and-ai-generated-

synthetic-images. 

The CIFAKE dataset provides several advantages for AI-generated image 

classification research: 

1. Balanced class distribution (equal numbers of real and AI-generated images) 

2. Diverse content spanning multiple categories (animals, vehicles, everyday 

objects) 

3. Consistent generation methodology using state-of-the-art Stable Diffusion 

models 

4. Sufficient scale for robust statistical validation of classification methods 

 
Figure 1. Example images from Real and AI-Generated Synthetic Images 

 

The real images in the CIFAKE dataset come from the widely used CIFAR-

10 benchmark, while the fake images were generated using Stable Diffusion with 

prompts derived from CIFAR-10 class names. This approach ensures that both real 

and fake images contain similar subject matter, making the classification task 

focused on detecting AI generation artifacts rather than content differences. 

2.2. Data Preparation and Preprocessing 

Our data preparation involved a systematic approach to ensure optimal 

model training and evaluation across multiple experimental configurations. 

2.2.1. Data Sampling and Split Methodology 

For computational efficiency while maintaining statistical validity, we 

sampled a balanced subset of 5,000 images (2,500 real and 2,500 fake) from the full 
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CIFAKE dataset. We implemented a 70/15/15 split ratio for train/validation/test 

partitioning, resulting in: 

1. Training Set: 2,125 images (balanced between real and fake classes) 

2. Validation Set: 375 images (balanced between real and fake classes) 

3. Testing Set: 2,500 images (balanced between real and fake classes) 

This stratified sampling approach maintains class balance across all 

partitions while providing sufficient data for both training and rigorous evaluation. 

2.2.2. K-Fold Cross-Validation 

To ensure robust evaluation and minimize the impact of data partitioning 

variability, we implemented 5-fold cross-validation for all experimental 

configurations. This approach involves: 

1. Partitioning the combined training and validation data into 5 equal folds 

2. Performing 5 separate training runs, each using 4 folds for training and 1 

fold for validation 

3. Averaging performance metrics across all 5 runs to obtain more reliable 

estimates 

4. Calculating standard deviations to quantify the variability of model 

performance 

This methodology provides a more comprehensive assessment of model 

performance than single train-test splits, particularly important for comparing 

different CNN architectures and optimizers. 

2.2.3. Image Preprocessing 

All images underwent standardized preprocessing steps: 

1. Normalization: Pixel values were normalized to the range [0, 1] by dividing 

each pixel value by 255. This step helps stabilize the training process and 

often leads to faster convergence. 

2. One-Hot Encoding: Class labels were converted to one-hot encoded vectors 

for compatibility with categorical cross-entropy loss function. 

2.3. Convolutional Neural Network (CNN) Architecture 

We designed and evaluated four different Convolutional Neural Network 

(CNN) configurations to systematically investigate the impact of model complexity 

on classification performance. These architectural choices were carefully 

considered to span a range of complexity levels while maintaining consistent overall 

structure. 

Table 1. Evaluated Convolutional Neural Network (CNN) configurations. 

Configuration Conv Layers Max Pooling FC Layers 

1 1 1 2 

2 2 1 2 

3 3 2 2 

4 4 2 2 

The selection of these specific configurations was driven by several key 

considerations: 
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1. Progressive Complexity: 

The progressive increase in convolutional layers (from 1 to 4) across 

configurations allows us to systematically evaluate how increasing model 

depth affects classification accuracy (Alzubaidi et al., 2021; Du et al., 2023). 

This design approach enables us to identify the optimal balance between 

model complexity and performance. 

2. Layer Configuration Design: 

Each configuration varies in the number of convolutional layers and 

max pooling layers, while maintaining two fully connected layers at the end 

of the network. Configuration 1 represents a minimal architecture with a 

single convolutional layer, while Configuration 4 implements a deeper 

network with multiple convolutional blocks separated by pooling 

operations. 

All convolutional layers use 3×3 kernels with ReLU activation and 

'same' padding. The first set of convolutional layers use 32 filters, while 

deeper layers use 64 filters to increase feature representation capacity. The 

fully connected portion consists of a 128-neuron dense layer with ReLU 

activation, followed by a dropout layer (rate=0.5) for regularization, and a 

final output layer with softmax activation for binary classification. 

2.4. Optimizers 

To explore the impact of different optimization algorithms on model 

performance, we compared four popular optimizers: 

1. Stochastic Gradient Descent (SGD): A classic optimization algorithm that 

updates model parameters based on the gradient of the loss function. We 

configured SGD with a learning rate of 0.01 and momentum of 0.9 to 

accelerate convergence while reducing oscillation. 

2. Adam: An adaptive learning rate optimization algorithm that computes 

individual learning rates for different parameters using estimates of first and 

second moments of the gradients. We used the default hyperparameters 

(learning rate=0.001, beta_1=0.9, beta_2=0.999). 

3. Adagrad: An optimizer with parameter-specific learning rates that adapts 

the learning rate to the parameters, performing smaller updates for 

frequently occurring features. This approach can be beneficial for dealing 

with sparse data. 

4. Adadelta: An extension of Adagrad that addresses its aggressive, 

monotonically decreasing learning rate by restricting the window of 

accumulated past gradients to a fixed size (Chen and Tsou, 2022; Hassan et 

al., 2023; Choi et al., 2020; Ali and Kumar, 2022). 

These optimizers represent a diverse range of approaches to navigating the 

loss landscape, from simple gradient-based methods to sophisticated adaptive 

techniques. 

2.5. Training Procedure 

The training process for all models followed these parameters: 

1. Number of epochs: 20 (with early stopping) 
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2. Batch size: 32 

3. Loss function: Categorical crossentropy 

4. Early stopping: Patience of 5 epochs monitoring validation loss 

5. Model checkpoint: Saving the best model based on validation accuracy 

The categorical crossentropy loss function is defined as: 

𝐿 = − ∑𝐶
𝑖=1 𝑦𝑖 𝑙𝑜𝑔 (𝑦𝑖) (2) 

 
where C is the number of classes,  yi is the true label, and yi is the model's 

prediction. 

We implemented all models using Keras with TensorFlow backend and 

conducted experiments on a system with multi-core CPU processing. This setup 

allowed for efficient training and evaluation of multiple model configurations 

across k-fold cross-validation runs. 

2.6. Evaluation Metrics 

Model performance was evaluated using a comprehensive set of metrics to 

provide a thorough assessment of classification capability: 

1. Accuracy: The proportion of correctly classified images across both classes 

2. Precision: The ratio of true positives to all predicted positives 

3. Recall: The ratio of true positives to all actual positives 

4. F1-score: The harmonic mean of precision and recall 

For each configuration and optimizer combination, we report both the mean 

and standard deviation of these metrics across the 5 folds of cross-validation. This 

approach provides robust estimates of expected performance and quantifies the 

variability of each model configuration (Hicks et al., 2022). 

For the final model evaluation, we also generate and analyze the confusion 

matrix to understand the distribution of classification errors between real and AI-

generated images. 

Through this systematic experimental design, we aim to identify the most 

effective combination of CNN architecture and optimizer for AI-generated image 

classification, providing insights that can guide the development of robust detection 

systems (Bera and Shrivastava, 2020). 

3. RESULTS AND DISCUSSION 

This section presents the findings from our comprehensive experimental 

evaluation of various Convolutional Neural Network (CNN) architectures and 

optimizers for AI-generated image classification. We analyze the performance 

patterns across different model configurations, interpret the results through k-fold 

cross-validation, and discuss their implications for deepfake detection applications 

(Althnian et al., 2021). 

3.1. Performance Across CNN Configurations and Optimizers 

Our comprehensive experiments with the CIFAKE dataset using k-fold 

cross-validation revealed significant insights into CNN optimization for AI-
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generated image classification. This section presents the performance analysis 

across different architectural configurations and optimization algorithms, followed 

by an in-depth discussion of the findings. 

Table 2. Performance metrics (accuracy, precision, recall, and F1-score) for 

different CNN configurations and optimizer 

Configuration Optimizer Accuracy Precision Recall F1-Score 

Config 1 SGD 0.8064 ± 

0.0109 

0.8090 ± 

0.0102 

0.8064 ± 

0.0109 

0.8060 ± 

0.0110 

Config 1 Adam 0.8224 ± 

0.0097 

0.8241 ± 

0.0089 

0.8224 ± 

0.0097 

0.8220 ± 

0.0100 

Config 1 Adagrad 0.7064 ± 

0.0301 

0.7211 ± 

0.0266 

0.7064 ± 

0.0301 

0.7027 ± 

0.0343 

Config 1 Adadelta 0.6412 ± 

0.0219 

0.6489 ± 

0.0217 

0.6412 ± 

0.0219 

0.6402 ± 

0.0217 

Config 2 SGD 0.8072 ± 

0.0248 

0.8094 ± 

0.0226 

0.8072 ± 

0.0248 

0.8064 ± 

0.0255 

Config 2 Adam 0.8060 ± 

0.0125 

0.8115 ± 

0.0149 

0.8060 ± 

0.0125 

0.8052 ± 

0.0126 

Config 2 Adagrad 0.7216 ± 

0.0276 

0.7349 ± 

0.0132 

0.7216 ± 

0.0276 

0.7179 ± 

0.0333 

Config 2 Adadelta 0.6364 ± 

0.0189 

0.6478 ± 

0.0212 

0.6364 ± 

0.0189 

0.6340 ± 

0.0180 

Config 3 SGD 0.8240 ± 

0.0255 

0.8267 ± 

0.0263 

0.8240 ± 

0.0255 

0.8238 ± 

0.0255 

Config 3 Adam 0.8252 ± 

0.0179 

0.8282 ± 

0.0159 

0.8252 ± 

0.0179 

0.8250 ± 

0.0182 
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Config 3 Adagrad 0.7040 ± 

0.0213 

0.7146 ± 

0.0149 

0.7040 ± 

0.0213 

0.7011 ± 

0.0248 

Config 3 Adadelta 0.6088 ± 

0.0155 

0.6311 ± 

0.0251 

0.6088 ± 

0.0155 

0.6008 ± 

0.0277 

Config 4 SGD 0.8260 ± 

0.0197 

0.8290 ± 

0.0184 

0.8260 ± 

0.0197 

0.8257 ± 

0.0198 

Config 4 Adam 0.8368 ± 

0.0135 

0.8374 ± 

0.0131 

0.8368 ± 

0.0135 

0.8368 ± 

0.0135 

Config 4 Adagrad 0.7036 ± 

0.0222 

0.7180 ± 

0.0119 

0.7036 ± 

0.0222 

0.6998 ± 

0.0271 

Config 4 Adadelta 0.6112 ± 

0.0239 

0.6155 ± 

0.0233 

0.6112 ± 

0.0239 

0.5887 ± 

0.0649 

The highest performance was achieved by Configuration 4 with Adam 

optimizer, reaching an accuracy of 0.8368 ± 0.0135 and F1-Score of 0.8368 ± 

0.0135. This finding suggests that increased architectural complexity (4 

convolutional layers with 2 max-pooling layers) provides enhanced feature 

extraction capability, particularly when paired with an appropriate optimizer. 

 
Figure 2. Performance comparison of different CNN configurations across 

optimizers. 
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Figure 2 illustrates the comparative performance across all configurations 

and optimizers, highlighting several key patterns. Adam and SGD consistently 

outperformed Adagrad and Adadelta across all architectural configurations. 

Furthermore, while Adam maintained relatively consistent performance across 

different architectures, SGD showed more variability, with its performance 

generally improving as model complexity increased. 

3.2. Optimal Model Performance 

Based on the cross-validation results, we selected Configuration 4 with the 

Adam optimizer for our final model. This model was trained on the entire training 

set and evaluated on the held-out test set. The final model achieved the following 

performance metrics: 

● Test accuracy: 0.8528 

● Test precision: 0.8531 

● Test recall: 0.8528 

● Test F1-score: 0.8528 

The confusion matrix for the optimal model (Figure 3) reveals balanced 

performance across both real and fake image categories. The model correctly 

identified 1,085 real images (true positives) and 1,047 fake images (true negatives), 

with comparable false positive (165) and false negative (203) rates. This balanced 

error distribution indicates the model's ability to detect both classes with similar 

efficacy, an important characteristic for practical deployment in content verification 

systems. 

 
Figure 3. Confusion matrix for the optimal model (Configuration 4 with Adam 

optimizer). 
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3.3. Learning Dynamics 

The learning curves for the optimal model (Figure 4) provide valuable 

insights into the training process. While training accuracy consistently increased 

throughout the training period, validation accuracy plateaued after approximately 8 

epochs. The growing gap between training and validation curves in later epochs 

indicates the onset of overfitting, highlighting the importance of early stopping 

mechanisms to prevent performance degradation on unseen data. 

 
Figure 4. Learning curves showing training and validation accuracy/loss over 

epochs. 

3.4. Impact of Architectural Complexity and Optimizer Selection 

Our experiments revealed a clear relationship between architectural 

complexity and classification performance. When comparing the progression from 

Configuration 1 (simplest) to Configuration 4 (most complex), we observed a 

general trend of increasing performance, particularly with Adam and SGD 

optimizers. However, this improvement showed diminishing returns, with the 

performance gain between Configurations 3 and 4 being smaller than between 

earlier configurations. 
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Figure 5. Heatmap visualization of F1-scores across different configurations and 

optimizers. 

The heatmap visualization (Figure 5) provides a comprehensive view of 

how architectural complexity interacts with optimizer selection. This visualization 

clearly demonstrates that while Adam and SGD maintained strong performance 

across configurations, Adagrad and Adadelta consistently underperformed 

regardless of architecture. This finding suggests that optimizer selection may be 

equally or more important than architectural complexity for AI-generated image 

classification tasks. 

3.5. Discussion 

Our findings reveal that Configuration 4's superior performance stems from 

its ability to capture subtle artifacts in AI-generated images through deeper 

convolutional layers. Adam optimizer demonstrated remarkable consistency across 

architectures due to its adaptive learning rate mechanics, which effectively navigate 

complex loss landscapes. Surprisingly, SGD performed well despite its simplicity, 

likely due to its ability to escape sharp local minima. 

The poor performance of Adadelta contradicts our preliminary findings with 

limited data, emphasizing the importance of robust methodology and sufficient data 

volume. The balanced detection rates between real and fake categories, as shown in 

our confusion matrix, ensure reliability for content verification applications where 

both false positives and negatives have significant consequences. While we used 

64×64 pixel images, our principles likely apply to higher-resolution images with 

appropriate computational efficiency considerations. 

4. CONCLUSION 

This study comprehensively evaluated CNN performance for AI-generated 

image classification using k-fold cross-validation on the CIFAKE dataset. 
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Configuration 4 with Adam optimizer achieved optimal performance 

(0.8368±0.0135 validation accuracy, 85.28% test accuracy). Adam delivered 

consistent performance across architectures, while SGD showed strong but variable 

results. Adagrad and Adadelta consistently underperformed. 

Learning dynamics analysis highlighted the importance of early stopping, as 

validation performance plateaued after approximately 8 epochs. The balanced 

performance across real and fake categories demonstrates the approach's reliability 

for deepfake detection applications. 

While more complex architectures performed better, the diminishing returns 

between Configurations 3 and 4 suggest a practical complexity limit. Future 

research should explore transfer learning, attention mechanisms, ensemble 

methods, and evaluation on emerging AI-generated content. Our findings provide a 

foundation for effective detection systems that can help maintain digital media 

integrity in an era of rapidly evolving generative AI technologies. 
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