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ABSTRACT

This work presents convolution and correlation in offset coupled fractional Fourier transform. The offset coupled
fractional Fourier transform can be regarded as a generalized version of the coupled fractional Fourier transform.
Various properties including this work like inversion formula and Parseval are studied in general and in detail for
the offset coupled fractional Fourier transform. Furthermore, this work establishes the relationship between the
two-dimensional Fourier transform and the offset coupled fractional Fourier transform.
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1. INTRODUCTION

Fractional Fourier transform (FrFT), as with the traditional Fourier transform (FT), is an effective mathematical tool that has
been used extensively in quantum mechanics, neural networks, differential equations, optics, pattern recognition, radar, sonar,
and other communication systems; see, for examples, [1],[2],[3],[4], [5] considered an extension of the traditional FT started in
1980 by Namias[6].

This work focus on the Coupled offset fractional Fourier Transform. Under certain conditions, we first obtain the symmetry
properties of the offset Coupled fractional Fourier Transform for real signals. A new form of convolution and correlation
theorem associated with this transform is proposed. In this study, the definition of convolution and correlation will be developed
to obtain convolution and correlation theorems for the Coupled offset fractional Fourier transform.

The motivation for this study also arises from practical needs in modern communication and imaging systems, where signals
often undergo various forms of coupling and displacement. For example, radar systems operating under Doppler shift and
spatial offsets naturally benefit from OCFrFT analysis. Matched filtering in radar traditionally performed via time-domain
convolution or frequency-domain multiplication can be enhanced using the FrFT. Researchers have shown that using an optimal
fractional order improves chirp pulse compression and signal to noise ratio, surpassing classical FT approaches[7],[8]. In sonar
and underwater acoustics, similar benefits have been demonstrated through improved detection of linear frequency-modulated
signals via FrFT-based correlation techniques[9].

Likewise, in optical systems featuring angular modulation, the OCFrFT framework provides a natural means to account
for phase shifts and coupling effects between spatial and frequency dimensions. The rotated time-frequency representation
inherent in FrFT is particularly useful for filter design and signal analysis in such non-stationary settings. Within these contexts,
a properly formulated convolution theorem aligned with OCFrFT is crucial. It lays the theoretical foundation for matched filters,
system identification algorithms, and adaptive signal-processing frameworks that handle offset and coupling intricacies.

As a preliminary step toward our main results, we first review the mathematical structure of the OCFrFT, highlighting
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the effects of coupling parameters and offset terms. After that, we explore the impact of these modifications on symmetry
properties, leading to the identification of key constraints for real signal processing. Based on this foundation, we develop the
new convolution and correlation definitions and prove the corresponding theorems. Our proofs are based on operator theory and
integral-kernel representations, ensuring consistency with both traditional FT and fractional frameworks[10],[11].

Recent developments have significantly enriched the theoretical framework of fractional and coupled transforms. The
uncertainty principles for the coupled fractional Fourier transform have been explored in various forms, emphasizing bounds and
stability under signal transformations[12]. Additional properties and structural extensions of the coupled FrFT were introduced
in [13], offering deeper insight into their operational behavior. Beyond the fractional domain, related mathematical tools such as
the wavelet transform have provided complementary time-frequency analysis techniques [14], while time-frequency foundations
are comprehensively presented in [15]. The classical Fourier transform and its widespread applications remain a cornerstone of
signal analysis, as detailed in [16].

In the context of windowed transforms, important properties of the windowed linear canonical transform and its logarithmic
uncertainty principles have been studied in [17], with further investigation on its connection to the windowed Fourier transform
and broader uncertainty frameworks in [18]. These concepts are crucial in understanding signal concentration and resolution in
both standard and fractional domains [19].

Furthermore, the logarithmic, Heisenberg, and short-time uncertainty principles associated with the fractional Fourier
domain have been rigorously analyzed in [20], with applications extended to the short-time linear canonical transform of
complex signals [21]. Recent work also introduced new mathematical relations within the coupled FrFT domain [22] and
established uncertainty principles tailored for quadratic-phase Fourier transforms, providing a broader spectrum for theoretical
generalization [23].

The remainder of this paper is organized as follows. Section 2 presents a comprehensive review of the offset coupled
fractional Fourier transform, including its definition, kernel representation, and the influence of its parameters. Section 3
introduces the convolution and correlation operations adapted to the OCFrFT, together with formal statements of theorems and
their corresponding proofs. Section 4 concludes the paper and discusses potential directions for future research.

We believe that the formulation of convolution and correlation theorems in the OCFrFT domain not only enriches the
mathematical theory of fractional transforms but also opens up new possibilities for signal processing in complex, non-stationary
environments. As systems continue to evolve toward higher dimensions and exhibit more sophisticated interactions, transform
frameworks like the OCFrFT backed by solid theoretical tools will become increasingly essential.

2. PRELIMINARIES

We first review the relevant material related to the fractional Fourier transform (FrFT) and the coupled fractional Fourier
transform and its basic properties, which will be required in the sequel. We start with the well-known definition.

Definition 2.1. This study proposes a convolution and correlation theorem for measurable functions on R? defined Lebesgue
space L*(R?) — norm, as follows:

1
Wl = ([ 5@ ae) <om 157 N

Where z = (z1,22) € R?, dz = dz1dz,.
Specifically, if r = oo we get the L (R?)-norm

11|22 (r2) = esssup | f(2))| 2)

z€R2

If f is continuous, then the above equation can be written as

1F |2y = sup [ f(2)] 3)

z€R2

In general, the inner product of L?(IR?) is defined as

(b = [ S22 dz @
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Definition 2.2. Given a function f € L?>(R?), the two-dimensional fractional Fourier transform with parameter  is defined by
the form

Zalf}(Q) = [ f@KalG.2)dz, 5)

2

where the kernel K ({,z) is defined as
Age D (PHIER) simtesca oy pn
Ka(8,2) =14 68(z—-0), o =2nw, (6)
0(z+¢), a=_2n+1)w, nelZ.
For a Dirac delta function
6(z—8)=06(z1 — 1) 6(z2 — &),

and

_ 1—icota

— l+4icotx
Ag = o= "5 -

2 27
It is easy to verify that the FrFT kernel satisfies the following basic properties

(N

Ko(8,2) =K-ua(8,2),
and

/]Rz Ka(Z,C)mdz — 6(C . C/)

Where K (&, z) is the conjugate of Ky (&, 7).

3. MAIN RESULT

In this section, we will discuss the construction of Coupled offset fractional Fourier Transform and then convolution and
correlation will be established to get the main result of this paper which will be stated in the form of theorem.

3.1 Coupled Offset Fractional Fourier Transformation
In this section, we will discuss the construction of Coupled offset fractional Fourier Transform and then study some properties
that will be used to obtain the main results of this paper.

Definition 3.1. Suppose f € L?>(R?). The coupled fractional Fourier transform is defined as:

ML O = [ QK 5(E2)dz ®)

where

Kgﬁ(g’,z) =d(y) e*i(a(Y)(\ZlZHC|2+\m|2)+z<A(mfC)+C<(nfma(y))) o

In this case, for each parameter of the kernel we have

y="5% 8="5F a(y=co§,
cos o sin 0 eV
b(’}/76) - Sin'}/’ C(Y75) - siiny’ d(}/) - 27rsiny’

[ b(18) e(r.6)
M‘(—c(mé) bw))'
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The inverse of the Coupled offset fractional Fourier Transform obtained from the above definition is as follows.

Definition 3.2. For each M/, op {f}(&) € L*(R?), the inverse of the Coupled offset fractional Fourier Transform is obtained.

3= [ ML ArHOKT 5(C0dE (10)
For a particular case, if @ = 3, we get
1
y=a, 6=0, a(a)=cota, b(a) g M= 0,

1 1
C(OC):O, d(oc):%(l—kicota), A:(sn(l)a (1)>

sinQ

By substituting the above parameters into Definition 3.1, we get

14 IZ\ZHC\2+|m\2)+z-A(m*C)+C-(n*ma(Y)))

MLy @) = [amsiae
[ cotx 2 2y ﬁ Cl
iicota sz(z)e_l( 22 (22415 P) - (21 zz)( 0 a) <C2>) i

dz

2
. . g ¢
Licowa ¢ .f&)et(“ﬁ“wv+42>§$&;ié)dz

:l—Hcot(x/f ) exp(—i (L% (2> +|&*) = (z- &) escar) ) dz
—(**3) sina Za{f1(0).

An example of the definition of the Coupled Offset Fractional Fourier Transform with a Gaussian function is given below.

Example 3.1. Given a function f as follows

f=e .
Find its the Coupled Offset Fractional Fourier Transform.

Solution. From the definition we have

My s{/}HE) :/sz(Z)Kg’ﬁ(C,z)dz

—d(y) /R P o~ (@ P+EP+mP) A=) C-(n-ma(n) ) 4.

:d(y)e—i(a(y)(‘C|2+\m|2)+g~(n—ma(}/)))/ ¢ 1P e iaP p-ilzA(m=0) g
R2

Further, we get
—ila 24+ |m)+¢-(n—ma
MY G {fH(E) =d(ve (aM(E L+ m)+E-(n—-ma(7)))

4@1Z»(bWﬁ> d%&)(ﬁ-&)
y / o~ GHB) -ia(NE+3),, —e(r.8) b(v.8))\m=G) 4 4o
R2
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Thus,

—ila 24 |m?)+&-(n—ma
MY {fH(E) =d(v)e (a() (CP+m)+-(n—ma(y))

« / o (a3 —iCs (b(r8)im 1) +e(r.8)m—32)) 4
R2
« / o (1Hia(0)B—ita (~e(r.8)m ) +b(r8)m—y2) 4.
RZ

Using the fact that

B
/ e Bz g, — \/gem, where R(a) > 0,
R

in the right segment of the above equation we obtain

T ; 2 2
MY — % miaMUEF+m|*)+ - (n—ma(y))
(sr3)m - sexormy3p)
X e 4(1+ia(y))

2
(—etr8)m —31)+5(x:8)mr-2))
% e I(0+a7)

Here is the relation between the offset coupled fractional Fourier transform and the two-dimensional Fourier transform.
From the definition of the offset coupled fraction Fourier Transform, we get

ML {FHE / 2) =i (A P+mP) 122 A(m =)+ (n=-ma(v)) 4
:d(y)e—ia(Y)(\5\2+Im|2)+§(n—mu f() —a(|PzAm jizAG g
or can be simplified to
M} s {fHE) =d(7) ¢~ EP+mE)+C-(n—ma() /zfa(Z) 48 dz
: R

= d(y) e “WEFHDIEma0) 2 (£} (—AL)
where
Ful) = f(z)ei (aPrzam)
with 2-dimensional Fourier transform defined as
O = [ f@e
]

Now we provide the proof of Parseval formula for the COFRFT using the direct relationship between the FT and COFrFT.

Lemma 3.1. For all f,g € L*>(R?), the following relation holds:
4r sm47/ f(2) dz—/ M g {HE)M], g{ny(§)ag. (11)
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Proof. Based on the Parseval’s formula of the FT in equation (11), we have

[ SRR = [ FUHOFRHE)dL. (12
Replacmg f with fy(z) and h with hy(z) in both sides of equation (12), we see that

JalDha@dz= [ F{fuh(§) Flha} Q)
R R

And application of the relationship between FT and COFrFT, we get

L f@hG)dz = (~A0) Zha} (-AL)d¢.
Or, equivalenly which finishes the proof. O

Next, the convolution and correlation of the Coupled Offset Fractional Fourier Transform will be formed as follows.

3.2 Convolution
In this section, the convolution form of the Coupled offset fractional Fourier Transform will be shown.

Definition 3.3. Convolution operation on Coupled offset fractional Fourier Transform for f, h € L? (RZ) is given by

(f ) / ) (Pl o i eP givam g,

From the definition, the convolution form of the Coupled offset fractional Fourier Transform is obtained which is poured
into the following theorem.

Theorem 3.2. Given f,h € L?(R?), the convolution of the offset coupled fractional Fourier transform of f and 7 is obtained.
MY g {f*h}(£) = MY 5 {h}(8) F{f}(~AQ). (3.6)
Proof. Based on the definition of Coupled offset fractional Fourier Transform, we get
ML} (Q) = [ (KL 5(C.2)d

— Ye il WP pia(y)[zf? yiy-Am
=d(y /RZ./ h(z—y)e dzdy

—d(y / / y)hZ_y)efiawnz—yveiy-fxme—fa(y)<|z\2+|z|2+\m\z>+z»Ame+<xfma<y>>dzdy
R2 JR2

=d(y / POz y)e I gm i) A0 ) g gy
R> JR

By using the substitution integral by supposing the variable x = z —y, then we get

{f*h} / /2 7105 )\x‘zeiy.Am efi(x(y)(|x|2+\m|2)+(x+y).AmeJr(xfma(y))dxdy
R
A0 [, [ POV g s cam0s (e g gy
R2 JR2
/Rz sz ) As g1y )(Mz*|’"|2)+X'A’"*Q+(x*m0‘(7))dxdy

— —ic(y)(|x[*+|m[*)+x-Am—Q-+(x—mo(y))
~d(y) [ [h(x)e }

X (/RZ f(y)ey'ACdy> dx
— MY, {0} (8) Z{FH-AD).
which finishes the proof. O
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The correlations will be formed on the Coupled offset fractional Fourier Transform. First, the definition of the operation
on the correlation is given and from this definition, the correlation on the Coupled offset fractional Fourier transform will be
formed and we proof alternative solustion for correlation theorem using the definition of the convolution.

3.3 Correlation
In this section, the correlation form of the Coupled offset fractional Fourier Transform will be shown.

Definition 3.4. The correlation operation on the Coupled offset fractional Fourier Transform for f,h € L?>(R?) is given as
follows

(foh)(z) = / POV h(z+y) e @R gieME mivam gy,
R

Based on the definition, the correlation form of the Coupled offset fractional Fourier Transform is obtained which is poured
into the following theorem.

Theorem 3.3. Given f,h € L?>(R?) then the correlation of the offset coupled fractional Fourier transform of f and  is obtained.
MY g {foh}(§) = M 5 {h}(§) F {F}(~AL)

Proof. Based on the definition of Coupled offset fractional Fourier Transform, we get
ML {for}(©) = [ (Fom@KY 5(L.2)dz

=d(y /2/ FO) h(z+y) e @M gmiaWe? g=iv-dm g gy,
R

//f h(z 4 y) e @DIE gmivAm =i (DR ) teAm-0+(-ma(D) g gy

By using the substitution integral by assuming the variable x = z + y, then we get

Mg p{foh}(§ / / o) PP jiydm

s« =T (PP ) (=) Am—Q+(x=ma (1) g, 1

/ |:/ f —la (1) (|x|?+m|?)+x-Am— Qdy

x & (n—ma(y)) e Ame A= gy g
Therefore,

—i Xz }’}’L2 x-Am— x—m
Mg,ﬁ{th}(C) =d(y) th(x)e a(y) (2 m?) +x-Am—Q+ (x—ma(¥))

« ( / T dy) dx

=My 5 {1} (0) Z{f}H(-AL).
Which finishes the proof. O

Further proof of the correlation theorem for the coupled offset fractional Fourier transform using the relation between the
definition of convolution and the definition of correlation will be given. Alternative proof of the correlation theorem
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Substitution y = —x and suppose f(—z) = g(z) we get

(foh)(z) = / F(=x) h(z —x) e @Dl gmia)ll? givam gy

= |, 8@z =) e VT ay
= (2+h)(2)
By using the equation (3.15) we get
L (@4 1)(§) = My g {1}(§) F[2)(-AQ). (13)

Now consider that

F[g](-Ag) =

(z) €4 dz

oq

f(*Z) eiz~A§ dz

Fye 4 dx
flx
= Z[f(-AQ).

Substitute the equation above into equation (3.15), we get

e
) e—ix-AC dx

My, (8 +h)(§) = Mg, g {h}(8) F[fI(—AQ). (14)

And from equation (3.14), then left hand side equation we get

M, g{f o h}(§) = My g{n}(§) Z[fI(-AL).

which finishes the proof.

4. CONCLUSION

In this work, Coupled offset fractional Fourier transform is introduced. The convolution theorem and correlation associated
with this transform are derived in detail. We find that the convolution theorem is equivalent to the simple multiplication of the
Coupled offset fractional Fourier transform and the two-dimensional Fourier transform. In the future, we will concentrate on
investigating the properties and uncertainty principles of these transforms, which proofs are more complicated, and discuss
some applications, such as frequency filter analysis and etc.
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