Seismic Activity Analysis in Indonesia: Integrating Machine Learning, Geospatial Data, and Environmental Factors for Risk Assessment
DOI:
https://doi.org/10.24252/jpf.v13i1.54081Keywords:
Earthquake Data Analysis, Seismic Hazard Mapping, Principal Component Analysis (PCA), K-Means ClusteringAbstract
Earthquake’s phenomena are critical for understanding Earth's interior, tectonic processes, and disaster preparedness. Because of indonesia location in the Pacific Ring of Fire, it’s suffering from regular seismic activities which result in huge annual losses. This study investigates the earthquake data from 1992 to 2024 by applying clustering techniques such as K-means and geodata visualization. By integrating physics, geospatial analysis, and machine learning, the study processes earthquake data to calculate energy release and analyze spatial-temporal patterns. Principal Component Analysis (PCA) is applied to reduce data dimensionality, while K-Means clustering identifies seismic patterns based on magnitude, depth, and energy. Visual tools, including correlation heatmaps and spatial maps, are used to present findings that support earthquake risk management in Indonesia.The results reveal temporal patterns in earthquake activity, with peaks observed in 2004–2007, associated with significant seismic energy release. Spatial analysis highlights high energy concentrations in megathrust zones. PCA and K-Means clustering identify three distinct clusters with varying correlations between seismic and atmospheric variables, indicating the influence of thermal and tectonic factors. These insights contribute to seismic hazard mapping, risk reduction strategies, and the improvement of earthquake prediction models. Future research should extend datasets and refine machine learning techniques to achieve more accurate predictions.
Downloads
References
Alex Copley, “Studying Earthquakes to Save Lives,” 2017.
W. H. K. . Lee, Hiroo. Kanamori, Paul. Jennings, and Carl. Kisslinger, International Handbook of Earthquake & Engineering Seismology. Part A. Academic Press, 2003.
C. Wang and M. Manga, Earthquakes and Water, vol. 114. in Lecture Notes in Earth Sciences, vol. 114. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-00810-8.
A. Gudmundsson, “Elastic energy release in great earthquakes and eruptions,” Front Earth Sci (Lausanne), vol. 2, no. May, May 2014, doi: 10.3389/feart.2014.00010.
M. S. Vassiliou and H. Kanamori, “THE ENERGY RELEASE IN EARTHQUAKES,” 1982.
M. Ohnaka and M. Ohnaka, “Earthquake-source parameters related to magnitude,” 1978. [Online]. Available: https://academic.oup.com/gji/article/55/1/45/680684
A. Gudmundsson, “Elastic energy release in great earthquakes and eruptions,” Front Earth Sci (Lausanne), vol. 2, no. May, May 2014, doi: 10.3389/feart.2014.00010.
C. A. L. Qingwen Miao, “Spatial Distribution of Earthquake Energy Release in the Central United States from a Global Point of View,” 2008. [Online]. Available: http://folkworm.ceri.memphis.edu/
Danny Hilman Natawidjaja, Riset Sesar Aktif Indonesia dan Peranannya dalam Mitigasi Bencana Gempa dan Tsunami. 2021.
E. S. Z. Balok Budiyanto, “Penanganan Pasca Bencana Gempa di Lombok,” 2018.
M. Irsyam et al., “Past earthquakes in Indonesia and new seismic hazard maps for earthquake design of buildings and infrastructures,” in Geotechnical, Geological and Earthquake Engineering, vol. 25, Springer Netherlands, 2013, pp. 33–46. doi: 10.1007/978-94-007-5675-5_3.
L. Maulida, R. Ocktadinata, and B. Adhayanti, “Kesiapsiagaan Masyarakat Kota Cilegon dalam Menghadapi Bencana Gempa Bumi dan Tsunami,” Preventia : The Indonesian Journal of Public Health, vol. 7, no. 1, p. 20, Jun. 2022, doi: 10.17977/um044v7i12022p20-27.
R. D. M. J. N. N. A. Ricky Akbar, “Impelementasi Business Intelligenci Menentukan Daerah Rawan Gempa Bumi di Indonesia dengan Fitur Geolokasi,” Jurnal Edukasi dan Penelitian Informatika, 2018.
I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I. Chouvarda, “Machine Learning and Data Mining Methods in Diabetes Research,” 2017, Elsevier B.V. doi: 10.1016/j.csbj.2016.12.005.
C. Ding, “K-means Clustering via Principal Component Analysis.”
P. A. Kaban, R. Kurniawan, R. E. Caraka, B. Pardamean, B. Yuniarto, and Sukim, “Biclustering method to capture the spatial pattern and to identify the causes of social vulnerability in Indonesia: A new recommendation for disaster mitigation policy,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 31–37. doi: 10.1016/j.procs.2019.08.138.
E. D. A. Sani Putriana, “Clustering Data Titik Gempa dengan Metode Fuzzy Possibilitic C-Means,” Jurnal Rekursif, Mar. 2021.
T. H. J. H. Adela Tania, “Perbandingan Antara Algortima K-Means dan Algoritma Bisecting K-Means Dalam Menganalisis Gempa Bumi di Indonesia,” Jurnal Sistem Informasi dan Teknik Komputer, 2023.
M. Chandra Kirana et al., “Visualisasi Kualitas Penyebaran Informasi Gempa Bumi di Indonesia Menggunakan Twitter,” 2019. [Online]. Available: http://jurnal.polibatam.ac.id/index.php/JAIC
A. Amirsardari, M. Sofi, E. Lumantarna, I. Imran, and C. Duffield, “Impact of Earthquakes on the Transportation Infrastructure of Indonesia: A Preliminary Study,” Civil Engineering Dimension, vol. 21, no. 1, pp. 19–28, Mar. 2019, doi: 10.9744/ced.21.1.19-28.
I. Arfiani, D. Normawati, and M. D. Suratin, “Analisis dan Visualisasi Periodisitas Gempa Bumi di Maluku Utara,” Jurnal Ilmiah FIFO, vol. 16, no. 1, p. 37, May 2024, doi: 10.22441/fifo.2024.v16i1.004.
B. Gutenberg, “The Quarterly Journal of Geological Society of London Volume CXII The Energy of Earthquakes,” 2015. [Online]. Available: http://jgslegacy.lyellcollection.org/
N. Salem and S. Hussein, “Data dimensional reduction and principal components analysis,” in Procedia Computer Science, Elsevier B.V., 2019, pp. 292–299. doi: 10.1016/j.procs.2019.12.111.
I. Hidayatur Rifa and H. Pratiwi, “Media Statistika 13(2) 2020: 194-205 194 CLUSTERING OF EARTHQUAKE RISK IN INDONESIA USING K-MEDOIDS AND K-MEANS ALGORITHMS,” MEDIA STATISTIKA, vol. 13, no. 2, pp. 194–205, 2020, doi: 10.14710/medstat.13.1.194-205.
H. J. Wattimanela, U. S. Pasaribu, S. W. Indratno, and A. N. T. Puspito, “Earthquakes clustering based on the magnitude and the depths in Molluca Province,” in AIP Conference Proceedings, American Institute of Physics Inc., Dec. 2015. doi: 10.1063/1.4936449.
V. N. H. G.-N. N. Jian Chen, Knowledge and Systems Sciences, vol. 1103. in Communications in Computer and Information Science, vol. 1103. Singapore: Springer Singapore, 2019. doi: 10.1007/978-981-15-1209-4.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ayu Aprilia, Alka Budi Wahidin, Syafriadi

This work is licensed under a Creative Commons Attribution 4.0 International License.
Ciptaan disebarluaskan di bawah Lisensi Creative Commons Atribusi 4.0 Internasional.