Model Prediksi Metabolit Melalui Jalur Glikogenolisis Berdasarkan Fluktuasi Mikroklimat Lingkungan Kandang Sapi Perah

  • N. Suwarno Universitas Padjadjaran
  • A. Mushawwir Universitas Padjadjaran


Empat puluh ekor sapi perah laktasi 3-4 telah digunakan dalam penelitian ini untuk mengkaji hubungan mikroklimat dengan metabolisme melalui jalau glikogenolisis. Dua buah thermometer bola basah dan bola kering dipasang di dalam kandang serta di sekitar kandang pada masing-masing lokasi peternakan di Sukabumi dan Bandung Barat. Fluktuasi temperature, kelembaban serta temperature humidity index (THI) dicatat dan dihitung setiap hari. Penetapan kelembaban berdasarkan temperature bola kering serta perbedaan temperature antara bola kering dengan baola basah. Indeks temperatur dan kelembaban ditetapkan berdasarkan temperatur bola kering dan kelembaban. Koleksi data penelitian (kadar glikogen, glukosa 1-fosfat, glukosa 6-fosfat, glukosa 6-fosfatase dan glukosa) dilakukan sekali sebulan selama empat bulan. Plasma darah telah dikoleksi dari vena coccigeae. Sampel plasma darah telah dianalisis dengan menggunakan spektrofotometer berdasarkan biolabo kit dan eliza biosource kit. Data yang telah dikalkulasi, kemudian dianalisis menggunakan analisis korelasi regresi. Software SPSS IBM 21 telah digunakan untuk menganalisis semua parameter tersebut. Berdasarkan hasil penelitian menunjukkan bahwa terdapat korelasi baik positif maupun negatif antarparameter mikrolingkungan, metabolit melalui jalur glikogenolisis. Berdasarkan hasil penelitian diperoleh model prediksi kadar glikogen = 14,272 - 1,383 Temp + 0,935 RH -1,628 THI; Glukosa 1-Fosfat = 3,572 + 1,381 Temp + 0,733 RH + 1,836 THI; Glukosa 6-Fosfat = 81,771 + 1,373 Temp + 0,729 RH + 1,471 THI; Glukosa 6-Fosfatase = 53,381 + 1,274 Temp + 0,527RH +1,618 THI dan Glukosa = 43,721 + 0,787 Temp + 0,3061RH – 1,840 THI.


Download data is not yet available.


Abeni, F., Calamari, L., and Stefanini, L. 2007. Metabolic conditions of lactating Friesian cows during the hot season in the Po valley. 1. Blood indicators of heat stress. International Journal Biometeorology, 52(2), 87–96.

Adriani, L. dan Mushawwir, A., 2008. Kadar Glukosa Darah, Laktosa Dan Produksi Susu Sapi Perah Pada Berbagai Tingkat Suplementasi Mineral Makro. Artikel Ilmiah. Fakultas Peternakan Universitas Padjadjaran.

Bartholomew, G.A. 1971. Body Temperature and Energy Metabolism, in : Animal Function, Priciples ans Adaptations, Gordon, M.S., Bartholomew,G.A., Grinnell, A.D., Jorgensen, C.B., and White, F.N., Indian edition. Publishing Co.,Pvt.,Ltd., New Delhi.

Bellamy, D., Goldsworthy, G.J., Highnam, K.C., Mordue, W., and Phillips, J.G. 1975. Environmental Physiology. Blackwell Scientific Pub., Melbourne.

Chauhan, S.S., Celi, P., Leury, B.J., Clarke, I.J., and Dunshea. F.R. . 2014. Dietary antioxidants at supranutritional doses improve oxidative status and reduce the negative effects of heat stress in sheep. Journal of Animal Science, 92, 3364–3374.

Clark, J.A., McArthur, A.J., Monteith, J.L., and Wheldon, A.E. 1981. The Physics of Microclimate, in : Bioengineering Thermal Physiology and Comfort, Cena, K., and Clark, J.A. Elsevier Sci.Pub.Co., New York.

Dawson, W.R., and Whittow, G.C. 2000. Regulation of body temperature, in Sturkie’s Avian Physiology, 5th ed., edited by Whittow, G.C. Academic Press, Elsevies Sci.Pub.Co., Sydney, Tokyo.

Elsasser, T. H., Rhoads, R.P., Kahl, S., Collier, R., Baumgard, L.H., Li, C., and Caperna. T.J. 2009. Heat stress augments plasma tyrosinenitrated proteins and lactate-to-pyruvate ratio after repeated endotoxin (LPS) challenge in steers. Journal of Animal Science, 87(E-Suppl. 2),9.

Goncalves, R. L. S., Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., and Brand, M.D. 2015. Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. Journal of Biological Chemistry, 290, 209–227.

Latipudin, D. Dan Mushawwir, A. 2011. Regulasi Panas Tubuh Ayam Ras Petelur Fase Grower dan Layer, Jurnal Sains Peternakan Indonesia. 6(2) : 77-82.

Loyau, T., Metayer-Coustard, S., Berri, C., Crochet, S., Cailleau-Audouin, E., Sannier, M., Chartrin, P., Praud, C., Hennequet-Antier, C., Rideau, N., Courousse, N., Mignon-Grasteau, S., Everaert, N., Duclos, M.J., Yahav, S., Tesseraud, S., and Collin, A. 2014. Thermal manipulation during embryogenesis has longterm effects on muscle and liver metabolism in fast-growing chickens. PLoS One, 9(9), e105339.

Mujahid, A., Akiba. Y., & Toyomizu, M. 2007. Acute heat stress induces oxidative stress and decreases adaptation in young white leghorn cockerels by down regulation of avian uncoupling protein. Poultry Science, 86, 364-371.

Mushawwir A. dan Latipuddin, D. 2013. Biologi Sintesis Telur, Perspektif Fisologi, Biokimia dan Molekuler Produksi Telur. Penerbit Graha Ilmu, Yogyakarta.

Mushawwir, A. 2015. Biokimi Nutrisi. Widya Padjadjaran, Bandung.

Mushawwir, A. Dan Latipudin, D. 2011. Beberapa Parameter Biokimia Darah Ayam Ras Petelur Fase Grower dan Layer dalam Lingkungan “Upper Zonathermoneutral. Jurnal Peternakan Indonesia, 13(3), 191-198.

Mushawwir, A. dan Latipudin, D. 2012. Respon fisiologi thermoregulasi ayam ras petelur fase grower dan layer. Proseding seminar zootechniques for Indogeneous resources development, ISAA Fakultas Petenakan Universitas Diponegoro. Proceeding of National Seminar on Zootechniques, 1(1), 23-27.

Mushawwir, A., Adriani, A., and Kamil, K.A. 2011. Prediction Models for Olfactory Metabolic and Sows% Rnareticulocyt (Rnart) by Measurement of Atmospheric Ammonia Exposure and Microclimate Level. Journal of the Indonesian Tropical Animal Agriculture, 36,14-20.

Mushawwir, A., Yong, Y.K., Adriani, L., Hernawan, E., and Kamil, K.A. 2010. The Fluctuation Effect of Atmospheric Ammonia (NH3) Exposure and Microclimate on Hereford Bulls Hematochemical. Journal of the Indonesian Tropical Animal Agriculture, 35, 232-238.

Nguyen, T.T., Bowman, P.J., Haile-Mariam, M., Pryce, J.E., and Hayes B.J. 2016. Genomic selection for tolerance to heat stress in Australian dairy cattle. Journal of Dairy Science, 99, 2849-62.

Oresanya, T. F., Beaulieu, A.D., and Patience, J.F. 2008. Investigations of energy metabolism in weanling barrows: The interaction of dietary energy concentration and daily feed (energy) intake. Journal of Animal Science, 86, 348–363.

Pearce, S. C., Gabler, N.K., Ross, J.W., Escobar, J., Patience, J.F., Rhoads, R.P., and Baumgard, L.H. 2013. The effects of heat stress and plane of nutrition on metabolism in growing pigs. Journal of Animal Science. 91(5), 2108-2118.

Puvadolpirod, S.and Thaxton. J.P. 2000. Model of Physiological Stress in Chickens 1. Response Parameters. Poultry Science, 79, 363–369.

Renaudeau, D., Collin, A., Yahav, S., De Basilio, V., Gourdine, J.L., and Collier, R.J. 2012. Adaptation to hot climate and strategies to alleviate heat stress in livestock production. Animal, 6, 707–728.

Rhoads, R. P., La Noce, A.J., Wheelock, J.B., and Baumgard, L.H. 2011. Short communication: Alterations in expression of gluconeogenic genes during heat stress and exogenous bovine somatotropin administration. Journal of Dairy Science, 94, 917–1921.

Rhoads, R.P., Baumgard, L.H., and Suagee, J.K. 2013. Metabolic priorities during heat stress with an emphasis on skeletal muscle. Journal of Animal Science, 91, 2492–2503.

Roertshow, D. 2000. Temperature regulation and the Thermal Environment, in Duke’s Physiology of Domestic Animals, 12th ed., edited by ReeceW.O., Cornell Univ.Press.

Roland, L, Drillich, M., Klein-Jobstl, D., and Iwernes, M. 2016. Invited review: Influence of climatic conditions on the development, performance, and health of claves. Journal of Dairy Science, 99, 2438-52.

Shinder, D., Rusal, M., Tanny, J., Druyan, S., and Yahav, S., 2007. Thermoregulatory Responses of Chicks (Gallus domesticus) to Low Ambient Temperatures at an Early Age. Poultry Science, 86, 2200–2209.

Slimen, B, Najar, T., Ghram, A., and Abdrranna, M.. 2016. Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. . Journal of Animal Physiology and Animal Nutrition, 100, 401-12.

Tan, G.Y., Yang, L., Fu, Y. –Q., Feng, J.H., and Zhang, M.H. 2010. Effects of different acute high ambient temperatures on function of hepatic mitochondrial respiration, antioxidative enzymes, and oxidative injury in broiler chickens. Poultry Science, 89, 115-122.

Tankson, J. D., Vizzier-Thaxton, Y., Thaxton, J.P., May, J.D., and Cameron, J.A. 2001. Stress and nutritional quality of broilers. Poultry Science, 80, 1384-1389.

Tao, X., Zhang, Z.Y., Dong, H., Zhang, H., and Xin, H. 2006. Responses of thyroid hormones of market-size broilers to thermoneutral constant and warm cyclic temperatures. Poultry Science, 85, 520-1528.

Thompson, I. M., Monteiro, A.P.A., Dahl, G.E., Tao, S., and Ahmed, B.M. 2014. Impact of dry period heat stress on milk yield, reproductive performance and health of dairy cows. Journal ofAnimimal Science, 92(Suppl. 2), 734..

Tian H, Wang, W., and Zheng, N. 2015. Identification of diagnostic biomarkers and metabolic pathway shifts of heat-stressed lactating dairy cows. Journal of Proteomics. 125, 17-28.

Wang, S. C., Chen, J., Huang, Y., Li, X.F., and Zhang. D.J. 2007. Effect of heat stress on production performance and blood biochemical indices in broiler. China Poultry, 15, 11-13.

Won, S. G. L., Xie, G., Boddick., Rhoades, J.N., Lucy, M.C., Safranski, T.J., Selsby, J.T., Lonergan, S., Baumgard, L.H., Ross, J.W., and Rhoads, R.P. 2012. Acute duration heat stress alters expression of cellular bioenergetic-associated genes in skeletal muscle of growing pigs. Journal of Animal Science, 90 (Suppl. 3), 573.

How to Cite
Suwarno, N., & Mushawwir, A. (2019). Model Prediksi Metabolit Melalui Jalur Glikogenolisis Berdasarkan Fluktuasi Mikroklimat Lingkungan Kandang Sapi Perah. Jurnal Ilmu Dan Industri Peternakan , 5(2), 97-107.
Table of contents
Abstract viewed = 1806 times