IMPLEMENTATION OF GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION ON POPULATION GROWTH RATE IN MAJALENGKA
Keywords:
GWLR, Population Growth Rate, PopulationAbstract
This study investigates the factors that influence the population growth rate in Majalengka Regency using Geographical Weighted Logistic Regression (GWLR) approach. The data used includes the number of births (X1), the number of fertile age couples participating in family planning (X2), and the number of couples of childbearing age (X3) in each sub-district. Descriptive analysis showed significant variation in the variables used across Kecamatans. The simultaneous logistic regression test showed a significant effect of the three predictor variables on the overall population growth rate. However, the partial logistic regression test results showed that not all predictor variables had a significant influence individually in each Kecamatan. The logistic regression model proved to be feasible and suitable for making predictions based on observed data. The spatial heterogeneity test shows that there is heterogeneous variation in the population growth rate in each subdistrict. The best kernel weighting was selected using the Fixed Gaussian kernel function based on the lower AIC value. The results of GWLR modeling showed different effects of predictor variables on population growth rate in each subdistrict. Model evaluation shows that GWLR provides important information regarding the influence of predictor variables on population growth rate in Majalengka Regency. This study provides in-depth and contextual insights into the factors that influence population growth at the local level, which can be the basis for decision-making in regional planning and development.
Downloads
References
Aswanto. (2020). Pengaruh Jumlah Penduduk Dan Tingkat Pendidikan Terhadap Produk Domestik Regional Bruto (Pdrb) Provinsi Riau 2010-2020. Prosiding Seminar Nasional Ekonomi Dan Bisnis 1, 1–14.
BPS. (2023). Dalam Angka Kabupaten Majalengka.
Damayanti Sihombing, E., Andini, A., Yanti, R. D., & Hidayati, N. (2023). Pemodelan Konsumsi Beras Menggunakan Geographically Weighted Regression (Gwr). Jurnal Ilmiah Sain Dan Teknologi, 1(3), 27–36.
Dur, S., Cipta, H., & Rizki, N. A. (2023). Pemodelan Geographically Weighted Regression Terhadap Faktor-Faktor Yang Mempengaruhi Angka Putus Sekolah Menengah Kejuruan di Provinsi Sumatera Utara. Lebesgue: Jurnal Ilmiah Pendidikan Matematika, Matematika Dan Statistika, 4(3), 1490–1513.
Faruk, F. M., Faruk, F. M., Doven, F. S., & Budyanra, B. (2020). Penerapan Metode Regresi Logistik Biner Untuk Mengetahui Determinan Kesiapsiagaan Rumah Tangga Dalam Menghadapi Bencana Alam. Seminar Nasional Official Statistics, 2019(1), 379–389. https://doi.org/10.34123/semnasoffstat.v2019i1.146
Halim, A. (2020). Pengaruh Pertumbuhan Usaha Mikro, Kecil Dan Menengah Terhadap Pertumbuhan Ekonomi Kabupaten Mamuju. Jurnal Ilmiah Ekonomi Pembangunan, 1(2), 157–172. https://stiemmamuju.e-journal.id/GJIEP/article/view/39
Hendayanti, N. P. N., & Nurhidayati, M. (2020). Regresi Logistik Biner dalam Penentuan Ketepatan Klasifikasi Tingkat Kedalaman Kemiskinan Provinsi-Provinsi di Indonesia. Sainstek : Jurnal Sains Dan Teknologi, 12(2), 63. https://doi.org/10.31958/js.v12i2.2483
Hutama, I. A. W., & Kristiadi, D. (2019). Spatial Re-Configuration Initiatives for Informal-Like Settlement Revitalization: a Case of Yogyakarta Urban Kampong. Plano Madani, 8(1), 1–14. http://journal.uin-alauddin.ac.id/index.php/planomadani/article/view/7727
Ikhsanudin, M. R., & Pasaribu, E. (2023). Modeling the Percentage of Poor Population in Java Island using Geographically Weighted Regression Approach. Jurnal Matematika, Statistika Dan Komputasi, 20(1), 229–244. https://doi.org/10.20956/j.v20i1.27804
Justitiaski, B. U., Fitriyani, N., & Bahri, S. (2022). Modeling the Number of Infant Mortality in East Lombok using Geographically Weighted Poisson Regression. Eigen Mathematics Journal, 5(2), 100–108. https://doi.org/10.29303/emj.v5i2.138
Mahmudah, N., Khoiriyah, N., Statistika, P. S., Nahdlatul, U., & Sunan, U. (2023). IMPLEMENTASI GEOGRAPHICALLY WEIGHTED LOGISTIC REGRESSION PADA LAJU PERTUMBUHAN PENDUDUK DI. 4(3), 1856–1866.
Maulidina, T. P., & Oktora, S. I. (2020). Analisis Spasial Ketertinggalan Daerah Di Indonesia Tahun 2018 Menggunakan Geographically Weighted Logistic Regression. Indonesian Journal of Statistics and Its Applications, 4(3), 528–544. https://doi.org/10.29244/ijsa.v4i3.690
Nisa, K. (2022). Penerapan Model Geographically Weighted Poisson Regression untuk Demam Berdarah Dengue Di Kabupaten Bojonegoro. Jurnal Statistika Dan Komputasi, 1(1), 12–22. https://doi.org/10.32665/statkom.v1i1.444
Pratiwi, Y. D., Mariani, S., & Hendikawati, P. (2019). Pemodelan Regresi Spasial menggunakan Geographically Weighted Regression. UNNES Journal of Mathematics, 8(2), 32–41. http://journal.unnes.ac.id/sju/index.php/ujme
Sanusi, W., & Arkas, A. N. (2023). Pemodelan Angka Buta Huruf di Provinsi Sulawesi Selatan Menggunakan Geographically Weighted Regression. 3(2), 55–64.
Sari, Y. A. (2021). Pengaruh Upah Minimum Tingkat Pengangguran Terbuka Jawa Tengah. Equilibrium, 10(2), 121–130.
Sholikhah, B., Rosyid, A., & Chaniago, S. A. (2022). Pengaruh Tingkat Pengangguran Dan Tingkat Pertumbuhanpenduduk Terhadap Laju Pertumbuhan Ekonomi. 1(2), 88–97.
Sianipar, S. P., Masinambow, V. A., & Lapian, A. L. C. . (2022). Pengaruh Jumlah Penduduk dan Pengangguran Terhadap Tingkat Kemiskinan di Kota Tebing Tinggi Provinsi Sumatera Utara. Jurnal Berkala Ilmiah Efisiensi, 22(1), 24–34.
Solekha, N. A., & Qudratullah, M. F. (2022). Pemodelan Geographically Weighted Logistic Regression dengan Fungsi Adaptive Gaussian Kernel Terhadap Kemiskinan di Provinsi NTT. Jambura Journal of Mathematics, 4(1), 17–32. https://doi.org/10.34312/jjom.v4i1.11452
Wulandari, laili, & dkk. (2019). PENGARUH TINGKAT GLOBALISASI TERHADAP PENGANGGURAN DI ASEAN THE. Jurnal REP (Riset Ekonomi Pembangunan), 4(2), 119–127. http://jurnal.untidar.ac.id/index.php/REP
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Alifa Lesta Safitri, Aep Saeful Iman

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
By Submitting your manuscript to our journal, your are following Copyright & License