Indonesia Black Cumin (Nigella sativa L.) Seeds Extract as Ameliorant Reproductive Function in Type-2 Diabetes Mellitus

  • Retno Susilowati Biology Department, Faculty of Science and Technology, Islamic State University of Maulana Malik Ibrahim Malang
  • Nailirrohmah Hidayatin Biology Department, Faculty of Science and Technology, Islamic State University of Maulana Malik Ibrahim Malang
  • Amalia Rizka Diana Biology Department, Faculty of Science and Technology, Islamic State University of Maulana Malik Ibrahim Malang
  • Tri Kustono Adi Graduate School of Science, Hiroshima University


Diabetes initiates augmented damage in levels of nuclear and mitochondrial DNA in males. As a result, the sperm DNA is affected, as well, leading to lower levels of fecundity and influencing reproductive health. This study aims to improve male reproductive function and oxidative stress status in diabetic rats. Combination High Fat Diet (HFD) and Streptozotocin (STZ) injection 30 mg/kg intraperitoneally are the initiations of DM-2 for 14 weeks. Treat therapy using 80% ethanol extract of black cumin seeds takes five weeks. Based on parametric test on ANOVA test results followed by Duncan Multiple Range Tests on the concentration, abnormalities of spermatozoa and Super Oxide Dismutase (SOD) effects and the Kruskal-Wallis test followed by the Mann-Whitney test on non-parametric data of the spermatozoa motility and Malondialdehyde (MDA) levels, showed that obtaining black cumin dose 48 is an effective dose in improving sperm quality and stress oxidation level. It has the same effect with metformin, even has MDA level less than normal rats. This study finds out Ns-48 is an effective dose of ethanol extract of black cumin seeds to improving spermatozoa quality and stress oxidation level, so that it becomes valuable information for research related to the improvement of reproductive function in diabetes mellitus disease.


Abbasnezhad A, Hayatdavoudi P, Niazmand S, Mahmoudabady M. 2015. The effects of hydroalcoholic extract of Nigella sativa seed on oxidative stress in hippocampus of STZ-induced diabetic rats. Avicenna Journal of Phytomedicine. vol 5(4): 333‒340. doi: 10.22038/ajp.2015.3921.

Asmat U, Abad K, Ismail K. (2016). Diabetes mellitus and oxidative stress‒A concise review. Saudi Pharmaceutical Journal. vol 24(5): 547‒553. doi:

Assi MA, Hezmee MNM, Abba Y, Yusof MSM, Haron AW, Rajion MA, Al-Zuhairy MA. 2016. Prophylactic effect of Nigella sativa against lead acetate induced changes in spermiogram, reproductive hormones and gonadal histology of rats. Veterinary World. vol 9(11): 1305–1311. doi:

Aulanni'am, Roosdiana A, Rahmah NL. 2011. Potensi fraksi etanol dan etil asetat rumput laut coklat (Sargassum duplicatum Bory) terhadap penurunan kadar malondialdehid dan perbaikan gambaran histologis jejunum usus halus tikus IBD (Inflammatory Bowel Disease). Veterinaria Medika. vol 4(1): 57‒64.

Bahrin N, Muhammad N, Abdullah N, Talip BHA, Jusoh S, Theng SW. 2018. Effect of processing temperature on antioxidant activity of Ficus carica leaves extract. Journal of Science and Technology. vol 10(2): 99‒103. doi:

Bamosa AO, Kaatabi H, Lebda FM, Al Elq AM, Al-Sultan A. 2010. Effect of Nigella sativa seeds on the glycemic control of patients with type 2 diabetes mellitus. Indian Journal of Physiology and Pharmacology. vol 54(4): 344‒354.

Bansal AK, Bilaspuri GS. 2011. Impacts of oxidative stress and antioxidants on semen functions. Veterinary medicine International. vol 2011: 1‒7. doi:

Bashandy AES. 2007. Effect of fixed oil of Nigella sativa on male fertility in normal and hyperlipidemic rats. International Journal of Pharmacology. vol 3(1): 27‒33. doi:

Basmatzou T, Hatziveis K. 2016. Diabetes mellitus and influences on human fertility. International Journal of Caring Sciences. vol 9(1): 371‒379.

Burits M, Bucar F. 2000. Antioxidant activity of Nigella sativa essential oil. Phytotherapy Research. vol 14(5): 323-328. doi:;2-Q.

Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B. 2018. IDF Diabetes Atlas: Global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Research and Clinical Practice. vol 138: 271‒281. doi:

Desai SD, Saheb SH, Das KK, Haseena S. 2015. Effect of thymoquinone on MDA and SOD levels in sterptozotocine induced diabetic albino rats. Journal of Pharmaceutical Sciences and Research. vol 7(8): 523‒526.

Dhindsa S, Ghanim H, Batra M, Dandona P. 2018. Hypogonadotropic hypogonadism in men with diabesity. Diabetes Care. vol 41(7): 1516‒1525. doi:

Fishman SL, Sonmez H, Basman C, Singh V, Poretsky L. 2018. The role of advanced glycation end-products in the development of coronary artery disease in patients with and without diabetes mellitus: a review. Molecular Medicine. vol 24(1): 1‒12. doi:

Forouhi NG, Wareham NJ. 2014. Epidemiology of diabetes. Medicine (Abingdon). vol 42(12): 698–702. doi:

Hasan MA, Mustapha NM, Kadir AA, Hezmee M. 2018. Potential role of Nigella sativa (NS) in abating oxidative stress-induced toxicity in rats: a possible protection mechanism. IOSR Journal of Pharmacy and Biological Sciences (IOSR-JPBS). vol 13(5): 29‒42. doi:

Laleethambika N, Anila V, Manojkumar C, Muruganandam I, Giridharan B, Ravimanickam T, Balachandar V. 2019. Diabetes and sperm DNA damage: Efficacy of antioxidants. SN Comprehensive Clinical Medicine. vol 1(1): 49-59. doi:

Marbat MM, Ali MA, Hadi AM. 2013. The use of Nigella sativa as a single agent in treatment of male infertility. Tikret Journal of Pharmaceutical Sciences. vol 9(1): 19‒29.

Matough FA, Budin SB, Hamid ZA, Abdul-Rahman M, Al-Wahaibi N, Mohammed J. 2014. Tocotrienol-rich fraction from palm oil prevents oxidative damage in diabetic rats. Sultan Qaboos University Medical Journal. vol 14(1): 95‒103. doi:

Morrison CD, Brannigan RE. 2015. Metabolic syndrome and infertility in men. Best Practice & Research Clinical Obstetrics & Gynaecology. vol 29(4): 507‒515. doi:

Omolaoye T, Du Plessis SS. 2018. Diabetes mellitus and male infertility. Asian Pacific Journal of Reproduction. vol 7(1): 6‒14. doi:

Parandin R, Yousofvand N, Ghorbani R. 2012. The enhancing effects of alcoholic extract of Nigella sativa seed on fertility potential, plasma gonadotropins and testosterone in male rats. Iranian Journal of Reproductive Medicine. vol 10(4): 355‒362.

Pourmasumi S, Sabeti P, Rahiminia T, Mangoli E, Tabibnejad N, Talebi AR. 2017. The etiologies of DNA abnormalities in male infertility: an assessment and review. International Journal of Reproductive BioMedicine. vol 15(6): 331-344.

Qinna NA, Badwan AA. 2015. Impact of streptozotocin on altering normal glucose homeostasis during insulin testing in diabetic rats compared to normoglycemic rats. Drug Design, Development and Therapy. vol 9: 2515–2525. doi:

Ramaswamy S, Weinbauer GF. 2014. Endocrine control of spermatogenesis: Role of FSH and LH/testosterone. Spermatogenesis. vol 4(2): 1‒15. doi:

Réus GZ, Carlessi AS, Silva RH, Ceretta LB, Quevedo J. 2019. Relationship of oxidative stress as a link between diabetes mellitus and major depressive disorder. Oxidative Medicine and Cellular Longevity. vol 2019: 1‒6. doi:

Saeedi P, Petersohn I, Salpea P, Malanda B, Karuranga S, Unwin N, Colagiuri S, Guariguata L, Motala AA, Ogurtsova K, Shaw JE, Bright D, Williams R. 2019. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas. Diabetes Research and Clinical Practice. vol 157: 1‒10. doi:

Singh VP, Bali A, Singh N, Jaggi AS. 2014. Advanced glycation end products and diabetic complications. The Korean Journal of Physiology & Pharmacology. vol 18(1): 1‒14. doi:

Solomon SD, Chew E, Duh EJ, Sobrin L, Sun JK, VanderBeek BL, Wykoff CC, Gardner TW. 2017. Diabetic retinopathy: a position statement by the American Diabetes Association. Diabetes Care. vol 40(3): 412‒418. doi:

Walker WH. 2011. Testosterone signaling and the regulation of spermatogenesis. Spermatogenesis. vol 1(2): 116‒120. doi:

Research Articles
Abstract viewed = 545 times