Prediction of SARS-CoV-2 3C-like protease (3CLpro) crystal structure to provide COVID-19 inhibitor design through computational studies

  • Taufik Muhammad Fakih Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Islam Bandung, Indonesia
  • Dwi Syah Fitra Ramadhan Department of Pharmacy, STIKES Mandala Waluya, Indonesia


Infectious diseases have lately become pandemic, posing a threat to global public health with the introduction of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), previously provisionally named 2019 novel coronavirus or 2019-nCoV).  Technological advancements have increased the possibility of discovering natural inhibitor candidates capable of preventing and controlling COVID-19 infections. The SARS-CoV-2 3C-like protease (3CLpro) is critical for SARS-CoV-2 replication and is a prospective therapeutic target. This study aims to identify, evaluate, and explore the 3CLpro macromolecular structures from SARS-CoV and SARS-CoV-2, as well as their impact on angiotensin-converting enzyme 2 (ACE-2). The discovery of the two 3CLpro macromolecules revealed structural similarities in several regions. These findings were subsequently confirmed by performing protein-protein docking simulations to observe the interaction of 3CLpro with the active site ACE-2. With an ACE score of 701.41 kJ/mol, SARS-COV-2 3CLpro forms the strongest binding with ACE-2. As a result, the findings of this research can be used to guide the development of potential SARS-CoV-2 3CLpro inhibitors for the treatment of COVID-19 infectious diseases.


Alamri MA, Ul Qamar MT, Mirza MU, Bhadane R, Alqahtani SM, Muneer I, Froeyen M, Salo-Ahen OMH. 2021. Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CLpro. Journal of Biomolecular Structure and Dynamics. vol 39(13): 4936–4948. doi:

Alipoor SD, Mortaz E, Jamaati H, Tabarsi P, Bayram H, Varahram M, Adcock IM. 2021. COVID-19: Molecular and Cellular Response. Frontiers in Cellular and Infection Microbiology. vol 11: 1–16. doi:

Ansari MA, Jamal QMS, Rehman S, Almatroudi A, Alzohairy MA, Alomary MN, Tripathi T, Alharbi AH, Adil SF, Khan M, Malik MS. 2020. TAT-peptide conjugated repurposing drug against SARS-CoV-2 main protease (3CLpro): Potential therapeutic intervention to combat COVID-19. Arabian Journal of Chemistry. vol 13(11): 8069–8079. doi:

Banerjee A, Kanwar M, Maiti S. 2021. Theaflavin-3’-O-gallate a black-tea constituent blocked SARS CoV-2 RNA dependant RNA polymerase active-site with better docking results than remdesivir. Drug Research. vol 71(8): 462–472. doi:

Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE. 2000. The protein data bank. Nucleic Acids Research. vol 28(1): 235–242. doi:

BIOVA DS. 2020. Discovery studio modeling environment, release 2020. San Diego: Dassault Systemes.

Camacho CJ, Gatchell DW, Kimura SR, Vajda S. 2000. Scoring docked conformations generated by rigid‐body protein‐protein docking. Proteins: Structure, Function, and Bioinformatics. vol 40(3): 525–537. doi:;2-F.

Chan JFW, Yuan S, Kok KH, To KKW, Chu H, Yang J, Xing F, Liu J, Yip CCY, Poon RWS, Tsoi HW, Lo SKF, Chan KH, Poon VKM,

Chan WM, Daniel J, Cai JP, Cheng VCC, Yuen KY. 2020. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. The Lancet. vol 395(10223): 514–523. doi:

Chen YW, Yiu CPB, Wong KY. 2020. Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL pro) structure: virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research. vol 9: 1–17. doi:

Fakih TM. 2020a. Dermaseptin-based antiviral peptides to prevent COVID-19 through in silico molecular docking studies against SARS-Cov-2 spike protein. Pharmaceutical Sciences & Research. vol 7(4): 65–70. doi:

Fakih TM, Dewi ML, Syahroni E. 2020b. Magainin as an antiviral peptide of SARS-CoV-2 main protease for potential inhibitor: an in silico approach. Biogenesis: Jurnal Ilmiah Biologi. vol 8(1): 104–110. doi:

Graham RL, Becker MM, Eckerle LD, Bolles M, Denison MR, Baric RS. 2012. A live, impaired-fidelity coronavirus vaccine protects in an aged, immunocompromised mouse model of lethal disease. Nature Medicine. vol 18(12): 1820–1926. doi:

Guzzi PH, Mercatelli D, Ceraolo C, Giorgi FM. 2020. Master regulator analysis of the SARS-CoV-2/human interactome. Journal of Clinical Medicine. vol 9(4): 1–15. doi:

ICTV. 2020. Naming the 2019 Coronavirus. London: International Committee on Taxonomy of Viruses.

Mohammad S, Bouchama A, Alharbi BM, Rashid M, Khatlani TS, Gaber NS, Malik SS. 2020. SARS-CoV-2 ORF8 and SARS-CoV ORF8ab: genomic divergence and functional convergence. Pathogens. vol 9(9): 1–25. doi:

Kumar S, Maurya VK, Prasad AK, Bhatt MLB, Saxena SK. 2020. Structural, glycosylation and antigenic variation between 2019 novel coronavirus (2019-nCoV) and SARS coronavirus (SARS-CoV). Virusdisease. vol 31(1): 13–21. doi:

Liu WJ, Zhao M, Liu K, Xu K, Wong G, Tan W, Gao GF. 2017. T-cell immunity of SARS-CoV: Implications for vaccine development against MERS-CoV. Antiviral Research. vol 137: 82–92. doi:

Liu C, Zhou Q, Li Y, Garner LV, Watkins SP, Carter LJ, Smoot J, Gregg AC, Daniels AD, Jervey S, Albaiu D. 2020. Research and development on therapeutic agents and vaccines for COVID-19 and related human coronavirus diseases. ACS Central Science. vol 6(3): 315–331. doi:

Lu R, Zhao X, Li J, Niu P, Yang B, Wu H, Wang W, Song H, Huang B, Zhu N, Bi Y, Ma X, Zhan F, Wang L, Hu T, Zhou H, Hu Z, Zhou W, Tan W. 2020. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. The Lancet. vol 395(10224): 565–574. doi:

Ng OW, Chia A, Tan AT, Jadi RS, Leong HN, Bertoletti A, Tan YJ. 2016. Memory T cell responses targeting the SARS coronavirus persist up to 11 years post-infection. Vaccine. vol 34(17): 2008–2014. doi:

Pachetti M, Marini B, Benedetti F, Giudici F, Mauro E, Storici P, Masciovecchio C, Angeletti S, Ciccozzi M, Gallo RC, Zella D. 2020. Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. Journal of Translational Medicine. vol 18(1): 1–9. doi:

Prajapat M, Sarma P, Shekhar N, Avti P, Sinha S, Kaur H, Kumar S, Bhattacharyya A, Kumar H, Bansal S, Medhi B. 2020. Drug targets for corona virus: A systematic review. Indian Journal of Pharmacology. vol 52(1): 56–65. doi:

Rajpoot S, Alagumuthu M, Baig MS. 2021. Dual targeting of 3CLpro and PLpro of SARS-COV-2: a novel structure-based design approach to treat Covid-19. Current Research in Structural Biology. vol 3: 9–18. doi:

Ramadhan DS, Fakih TM, Arfan A. 2020. Activity prediction of bioactive compounds contained in Etlingera elatior against the SARS-CoV-2 main protease: An in silico approach. Borneo Journal of Pharmacy. vol 3(4): 235–242. doi:

Ramadhan DS, Siharis F, Abdurrahman S, Isrul M, Fakih TM. 2021. In silico analysis of marine natural product from sponge (Clathria Sp.) for their activity as inhibitor of SARS-CoV-2 Main Protease. Journal of Biomolecular Structure and Dynamics. vol 23: 1–7. doi:

Rotondi M, Coperchini F, Ricci G, Denegri M, Croce L, Ngnitejeu ST, Villani L, Magri F, Latrofa F, Chiovato L. 2021. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. Journal of Endocrinological Investigation. vol 44(5): 1085–1090. doi:

Sasidharan S, Selvaraj C, Singh SK, Dubey VK, Kumar S, Fialho AM, Saudagar P. 2020. Bacterial protein azurin and derived peptides as potential anti-SARS-CoV-2 agents: insights from molecular docking and molecular dynamics simulations. Journal of Biomolecular Structure and Dynamics. vol 39(15): 1–6. doi:

Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. 2005. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research. vol 33(2): 363–367. doi:

Shereen MA, Khan S, Kazmi A, Bashir N, Siddique R. 2020. COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses. Journal of Advanced Research. vol 24: 91–98. doi:

Tomic N, Pojskic L, Kalajdzic A, Ramic J, Kadric NL, Ikanovic T, Maksimovic M, Pojskic N. 2020. Screening of preferential binding affinity of selected natural compounds to SARS-CoV-2 proteins using in silico methods. EJMO. vol 4(4): 319–323. doi:

Verma D, Mitra D, Paul M, Chaudhary P, Kamboj A, Thatoi H, Janmeda P, Jain D, Panneerselvam P, Shrivastav R, Pant K, Mohapatra PKD. 2021. Potential inhibitors of SARS-CoV-2 (COVID 19) proteases PLpro and Mpro/3CLpro: molecular docking and simulation studies of three pertinent medicinal plant natural components. Current Research in Pharmacology and Drug Discovery. vol 2: 1–23. doi:

Yi Y, Lagniton PNP, Ye S, Li E, Xu RH. 2020. COVID-19: what has been learned and to be learned about the novel coronavirus disease. International Journal of Biological Sciences. vol 16(10): 1753–1766. doi:

Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. 2020. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus—A possible reference for coronavirus disease‐19 treatment option. Journal of medical virology. vol 92(6): 556–563. doi:

Zhang Q, Xiang R, Huo S, Zhou Y, Jiang S, Wang Q, Yu F. 2021. Molecular mechanism of interaction between SARS-CoV-2 and host cells and interventional therapy. Signal Transduction and Targeted Therapy. vol 6(1): 1–9. doi:

Zheng J. 2020. SARS-CoV-2: an emerging coronavirus that causes a global threat. International Journal of Biological Sciences. vol 16(10): 1–8. doi:

Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL. 2020. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 579(7798): 270–273. doi:

Research Articles
Abstract viewed = 46 times