Klasifikasi Kanker Kulit dari Citra Dermoskopi Menggunakan Fitur Gray Level Co-occurrence Matrix (GLCM) dengan Algoritma Machine Learning
Keywords:
Dermoscopic, Feature Extraction, GLCM, Machine Learning, Skin CancerAbstract
This study aims to classify skin cancer based on dermoscopic images using texture feature extraction through the Gray Level Co-occurrence Matrix (GLCM) technique by comparing the performance of four machine learning algorithms: Support Vector Machine (SVM), K-Nearest Neighbor (K-NN), Decision Tree, and Random Forest. This approach was developed to address the limitations of previous studies, which typically employed only a single algorithm without comprehensive comparison. The evaluation results show that Random Forest achieved the best performance, with an accuracy of 92.72%, precision of 94.44%, recall of 92.39%, and an F1-score of 93.40%. This is attributed to its ensemble nature, which combines multiple decision trees through a voting mechanism, making it effective in handling imbalanced data and complex texture patterns. Conversely, Support Vector Machine (SVM) demonstrated the lowest performance, with an accuracy of 66.06%, precision of 84.44%, recall of 64.40%, and an F1-score of 73.07%, indicating its limitations in recognizing nonlinear in high-dimensional data. Based on these results, the combination of GLCM and Random Forest has proven to be effective and optimal for medical image classification, and holds significant potential to support more accurate clinical decision-making in the early detection of skin cancer
Downloads
References
[1] Y. Ananda, G. Edo, dan S. Adelia. (2024). Buku Ajar Sistem Integumen. Purbalingga: Eureka Media Aksara.
[2] Enggar, Taqwin, Muliani, dan F. L. Abd. (2024) Anatomi Fisiologi Untuk Mahasiswa Kesehatan. Purbalingga: Eureka Media Aksara.
[3] N. Martin dan U. Daniel. (2024). Klasifikasi Kanker Kulit Pada Citra Dermatoskopi Menggunakan CNN. Jurnal Algoritme, Vol. 5 (1), ISSN: 2775-8796. Doi: 10.35957/algoritme.v5i1.9034.
[4] A. O. Ardhiansyah. (2024). Kanker Kulit dan Sarkoma Jaringan Lunak - Dari Teori Preklinik Hingga Aplikasi Klinik. Surabaya: Airlangga University Press.
[5] A. Ameri. (2020). A Deep Learning Approach to Skin Cancer Detection In Dermoscopy Images. J Biomed Phys Eng, Vol. 10 (6). Doi: 10.31661/Jbpe.V0i0.2004-1107.
[6] R. Suresh. (2024). Revolutionizing Physics: A Comprehensive Survey of Machine Learning Applications. Frontiers in Physics. Doi: 10.3389/Fphy.2024.1322162.
[7] Neneng, S. P. Ajeng, dan A. A. Ahmad Ari. (2021). Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-Occurrence Matrices (GLCM) dan Local Binary Pattern (LBP). Smatika Jurnal, Vol. 11 (1), ISSN: 2087-0256. Doi: 10.32664/Smatika.V11i01.572.
[8] L. M. Wisudawati. (2021). Klasifikasi Tumor Jinak Dan Tumor Ganas Pada Citra Mammogram Menggunakan Gray Level Co-Occurrence Matrix (GLCM) Dan Support Vector Machine (SVM). Jurnal Ilmiah Informatika Komputer, Vol. 26 (2), Doi: 10.35760/Ik.2021.V26i2.4897.
[9] S. Suharyana, A. Fuad, D. Armylia Chandra, Y. Mohtar, S. Umi, dan C. Rifai. (2023). Pneumonia Classification Based On GLCM Features Extraction Using K-Nearest Neighbor. Indonesian Journal of Applied Physics (IJAP), Vol. 13 (2), ISSN: 2089 – 0133. Doi: 10.13057/ijap.v13i2.77120.
[10] M. Yunianto, D. M. Rizka, dan S. Esti. (2024). Using Decision Tree With First And Second-Order Statistical Feature Extraction For Classification Of Lung Cancer. Indonesian Journal of Applied Physics (IJAP). Vol. 14 (2), ISSN: 2089 – 0133. Doi: 10.13057/Ijap.V14i2.87676.
[1] Y. Ananda, G. Edo, dan S. Adelia. (2024). Buku Ajar Sistem Integumen. Purbalingga: Eureka Media Aksara.
[2] Enggar, Taqwin, Muliani, dan F. L. Abd. (2024) Anatomi Fisiologi Untuk Mahasiswa Kesehatan. Purbalingga: Eureka Media Aksara.
[3] N. Martin dan U. Daniel. (2024). Klasifikasi Kanker Kulit Pada Citra Dermatoskopi Menggunakan CNN. Jurnal Algoritme, Vol. 5 (1), ISSN: 2775-8796. Doi: 10.35957/algoritme.v5i1.9034.
[4] A. O. Ardhiansyah. (2024). Kanker Kulit dan Sarkoma Jaringan Lunak - Dari Teori Preklinik Hingga Aplikasi Klinik. Surabaya: Airlangga University Press.
[5] A. Ameri. (2020). A Deep Learning Approach to Skin Cancer Detection In Dermoscopy Images. J Biomed Phys Eng, Vol. 10 (6). Doi: 10.31661/Jbpe.V0i0.2004-1107.
[6] R. Suresh. (2024). Revolutionizing Physics: A Comprehensive Survey of Machine Learning Applications. Frontiers in Physics. Doi: 10.3389/Fphy.2024.1322162.
[7] Neneng, S. P. Ajeng, dan A. A. Ahmad Ari. (2021). Perbandingan Hasil Klasifikasi Jenis Daging Menggunakan Ekstraksi Ciri Tekstur Gray Level Co-Occurrence Matrices (GLCM) dan Local Binary Pattern (LBP). Smatika Jurnal, Vol. 11 (1), ISSN: 2087-0256. Doi: 10.32664/Smatika.V11i01.572.
[8] L. M. Wisudawati. (2021). Klasifikasi Tumor Jinak Dan Tumor Ganas Pada Citra Mammogram Menggunakan Gray Level Co-Occurrence Matrix (GLCM) Dan Support Vector Machine (SVM). Jurnal Ilmiah Informatika Komputer, Vol. 26 (2), Doi: 10.35760/Ik.2021.V26i2.4897.
[9] S. Suharyana, A. Fuad, D. Armylia Chandra, Y. Mohtar, S. Umi, dan C. Rifai. (2023). Pneumonia Classification Based On GLCM Features Extraction Using K-Nearest Neighbor. Indonesian Journal of Applied Physics (IJAP), Vol. 13 (2), ISSN: 2089 – 0133. Doi: 10.13057/ijap.v13i2.77120.
[10] M. Yunianto, D. M. Rizka, dan S. Esti. (2024). Using Decision Tree With First And Second-Order Statistical Feature Extraction For Classification Of Lung Cancer. Indonesian Journal of Applied Physics (IJAP). Vol. 14 (2), ISSN: 2089 – 0133. Doi: 10.13057/Ijap.V14i2.87676.
[11] W. Wijaya, R. P. Muhammad, dan P. W. Eka. (2023). Klasifikasi Monkeypox Menggunakan Ekstraksi Fitur GLCM dan Algoritma Random Forest. 2nd Mdp Student Conference (MSC), Vol 2 (1), E-ISSN: 2985-7406. Doi: 10.35957/Mdp-Sc.V2i1.4435.
[12] Kaggle, “Skin Cancer: Malignant vs. Benign,” Kaggle Datasets, [Online]. Available: https://www.kaggle.com/datasets/fanconic/skin-cancer-malignant-vs-benign.
[13] J. S. Ananda, F. Yoza, dan P. Jesi. (2024). Classification Analysis Of Brain Tumor Disease In Radiographic Images Using Support Vector Machines (SVM) With Python. Journal Online Physics, Vol. 9 (3), ISSN: 2502-2016. Doi: 10.22437/Jop.V9i3.3627.
[14] M. I. I. Fata dan A. Donny. (2024). Penerapan Metode Naive Bayes Pada Sistem Klasifikasi Kualitas Biji Kopi Robusta. Jurnal Indonesia : Manajemen Informatika dan Komunikasi, Vol. 5 (1), ISSN: 2723-7079. Doi: 10.35870/Jimik.V5i1.515.
[15] H. Sumarti, S. Qolby, T. Devi, S. Fahira, dan P. D. R. Tara. Identification of Covid-19 Based on Features Texture Histogram and Gray Level Co-Occurrence Matrix (GLCM) Using K-Means Clustering Methods in Chest X-Ray Digital Images. (2023). Jurnal Penelitian Fisika dan Aplikasinya (JPFA), Vol. 13 (1), ISSN: 2087-9946. Doi: 10.26740/Jpfa.V13n1.P51-66.
[16] F. S. Lesiangi, A. Y. Mauko, dan B. S. Djahi. (2021). Feature Extraction Hue, Saturation, Value (HSV) and Gray Level Cooccurrence Matrix (GLCM) for Identification of Woven Fabric Motifs in South Central Timor Regency. Journal of Physics: Conference Series. Doi: 10.1088/1742-6596/2017/1/012010.
[17] Y. Amelia. (2023). Perbandingan Metode Machine Learning untuk Mendeteksi Penyakit Jantung. Idealis: Indonesia Journal Information System, Vol. 6 (2), ISSN: 2684-7280. Doi: 10.36080/Idealis.V6i2.3043.
[18] A. I. Sang, S. Edi, dan D. Irfan. (2021). Analisis Data Mining untuk Klasifikasi Data Kualitas Udara DKI Jakarta Menggunakan Decision Tree dan Support Vector Machine. E-Proceeding Of Engineering Telkom University, Vol. 8 (5), ISSN : 2355-9365.
[19] D. Normawati dan A. P. Surya. (2021). Implementasi Naïve Bayes Classifier dan Confusion Matrix pada Analisis Sentimen Berbasis Teks pada Twitter. Sains Komputer & Informa (J-SAKTI), Vol. 5 (2), ISSN: 2548-9771. Doi: 10.30645/j-sakti.v5i2.369.
[20] D. M. Rani, D. Frastica, dan F. Yoza. (2024). Classification of Lung Disease on X-Ray Images Based on Gray Level Co-Occurrence Matrix (GLCM) Feature Extraction and Backpropagation Neural Network Using Python Gui. Journal Online Physics, Vol. 9 (2), ISSN: 2502-2016. Doi: 10.22437/Jop.V9i2.32806.
[21] A. Maulida, Nurhidayah, F. Yoza, dan Haryono. (2022). Segmentasi Citra Mammogram Untuk Deteksi Dini Kanker Payudara Dengan Menggunakan Metode Otsu Thresholding. Jurnal Fisika Unand, Vol. 11 (2), ISSN: 2302-8491. Doi: 10.25077/Jfu.11.2.180-186.2022.
[22] A. Rahagiyanto, H. P. Bakhtiyar, Y. Muhammad, V. Veronika, E. J. S. Gandu, dan D. Atma. (2025). Perbandingan Kinerja Algoritma K-NN-DT-RF-SVM untuk Deteksi Dini Risiko Kematian Ibu. J-REMI : Jurnal Rekam Medik dan Informasi Kesehatan, Vol. 6 (2), ISSN: 2721-866X. Doi: 10.25047/J-Remi.V6i2.5658.
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Chrisman Imanuel Purba, Alrizal Alrizal, yoza fendriani

This work is licensed under a Creative Commons Attribution 4.0 International License.