Analisis Forecasting Peserta KB Jenis Suntik dan Pil Di Kabupaten Sidenreng Rappang Dengan Metode Seasonal Autoregressive Moving Average (SARIMA)

  • Ahmad Faiz Universitas Islam Negeri Alauddin Makassar
    (ID)
  • Andi Mariani Universitas Islam Negeri Alauddin Makassar
    (ID)
  • Wahidah Alwi Universitas Islam Negeri Alauddin Makassar
    (ID)

Abstract

This study aims to analyze the increasing demand for contraceptives, making forecasting necessary to anticipate future needs and prevent supply shortages. To support this program, an effective forecasting method is required to predict the number of family planning (FP) participants in the future. This study employs the SARIMA (Seasonal Autoregressive Integrated Moving Average) time series method to forecast the number of FP participants using injections and pills in Sidenreng Rappang Regency. The results show that the SARIMA (0,1,0)(0,1,1)12 model is the most suitable for injection-based FP participants, while the SARIMA (1,1,0)(0,1,1)12 model is used for pill-based FP participants. The forecast indicates a decline in the numiber of injection and pill FP participants from January 2024 to December 2025

Author Biography

Andi Mariani, Universitas Islam Negeri Alauddin Makassar

Program Studi Matematika

References

[1] Ananta, A., & Arifin, E. N. (2015). Indonesia's Population: Ethnicity and Religion in a Changing Political Landscape. Singapura: ISEAS-Yusof Ishak Institute.
[2] Yuliyanti, R., & Arliani, E. (2022). Peramalan jumlah penduduk menggunakan model arima. Jurnal Kajian dan Terapan Matematika, 114-128.
[3] Dimashanti, A. R., & Sugiman. (2021). Peramalan Indeks Harga Konsumen Kota Semarang. Jurnal PRISMA, 565-576.
[4] Sitorus, V. B., Wahyuningsih, S., & Hayati, M. N. (2017). Peramalan dengan Metode Seasonal Autoregressive Integrated Moving Average (SARIMA). Jurnal Eksponensial.
[5] Box, G., Jenkins, G., & Reinsel, G. (2015). Time Series Analysis: Forecasting and Control. New Jersey: John Wiley & Sons.
[6] Lusiana, A., & Yuliarty, P. (2020). Penerapan Metode Peramalan (Forecasting). Industri Inovatif - Jurnal Teknik Industri ITN Malang.
[7] Handayani, R., Wahyuningsih, S., & Yuniarti, D. (2018). Pemodelan Generalized Space Time Autoregressive (GSTAR) Pada Data Inflasi. Jurnal Eksponensial.
[8] Wei, W. (2006). Time Series Analysis Univariate and Multivariate Methods. Philadelphia: Pearson Addison.
[9] Ruslan, R., Harahap, A. S., & Sembiring, P. (2013). Peramalan Nilai Ekspor Di Propinsi Sumatera Utara Dengan Metode Arima Box-Jenkins. Saintia Matematika, 579-589.
[10] Rufaidah, A., & Effindi, M. A. (2019). Analisis Time Series Untuk Menentukan Model Terbaik. Jurnal Teori dan Terapan Matematika.
[11] Kafara, Z., Rumlawang, F. Y., & Sinay, L. J. (2017). Peramalan Curah Hujan Dengan Pendekatan Seasonal Autoregressive Integrated Moving Average (Sarima). Jurnal Ilmu Matematika dan Terapan, 63-74.
[12] Lestari, N., & Wahyuningsih, N. (2012). Peramalan Kunjungan Wisata dengan Pendekatan Model SARIMA. Jurnal Sains dan Seni ITS.
[13] Rizki, M. I., & Taqiyuddin, T. A. (2021). Penerapan Model SARIMA untuk Memprediksi Tingkat Inflasi di Indonesia. Jurnal Sains Matematika dan Statistika, 62-72.
Published
2025-01-27
How to Cite
[1]
Ahmad Faiz, Andi Mariani, and Wahidah Alwi, “Analisis Forecasting Peserta KB Jenis Suntik dan Pil Di Kabupaten Sidenreng Rappang Dengan Metode Seasonal Autoregressive Moving Average (SARIMA)”, MSA, vol. 12, no. 2, pp. 132-140, Jan. 2025.
Abstract viewed = 9 times

Most read articles by the same author(s)