Variation of Vocational Students' Difficulties in Solving System Linear Inequality Problem Based on Polya’s Theory

Authors

  • Ika Wulan Junianti Universitas Negeri Malang
  • Subanji Universitas Negeri Malang
  • Hery Susanto Universitas Negeri Malang

DOI:

https://doi.org/10.24252/mapan.2025v13n1a5

Keywords:

Difficulty, Problem-Solving, Contextual Problems, System of Linear Inequalities in Two variables

Abstract

Contextual problem-solving ability is a crucial skill that students, particularly those in vocational schools, must possess, as they will immediately enter the workforce. To optimize students' abilities, research was conducted on the variation of students’ difficulties in solving problems. This study aims to identify variations in vocational high school students' difficulties in solving contextual problems of the system of linear inequalities in two variables based on Polya’s theory and to offer alternative solutions that can be used to overcome these difficulties. The type of research used is qualitative with a descriptive approach. The study subjects were 3 students of 36 students of the grade XI vocational high school, who had received the material. These students were selected based on the category of abilities they had, namely high, medium, and low, as well as considerations of communication of teacher recommendation results. Data collection was carried out through tests and interviews. Based on the results of the study, it was found that 1) Low Ability Students (LAS) experienced many variation in difficulties at all stages in solving problems according to Polya’s theory, 2) Medium Ability Students (MAS) at the stage of understanding the problem experienced fewer variations in difficulties compared to the other three stages, 3) High Ability Students (HAS) at the stage of understanding the problem and making plans experienced fewer variation in difficulties compared to the other two stages. Apart from being based on Polya’s theory, students also experience other variations of difficulty, namely the difficulty in defining variables, constants, and coefficients correctly.

Abstrak:

Kemampuan penyelesaian masalah kontekstual adalah kemampuan penting yang harus dimiliki oleh siswa khususnya siswa sekolah kejuruan karena mereka akan langsung terjun ke dunia kerja. Untuk mengoptimalkan kemampuan siswa maka dilakukan penelitian terkait variasi kesulitan siswa dalam menyelesaikan masalah kontekstual. Penelitian ini bertujuan untuk mengidentifikasi variasi kesulitan siswa SMK dalam menyelesaikan masalah kontekstual sistem pertidaksamaan linear dua variabel berdasarkan teori Polya dan menawarkan solusi alternatif yang bisa digunakan untuk mengatasi kesulitan tersebut. Jenis penelitian yang digunakan adalah kualitatif dengan pendekatan deskriptif. Subjek penelitian sebanyak tiga siswa dari 36 siswa kelas XI SMK yang telah mendapatkan materi tersebut. Siswa ini dipilih berdasarkan kategori kemampuan yang dimiliki yaitu tinggi, sedang, dan rendah serta pertimbangan komunikasi hasil rekomendasi guru. Pengumpulan data dilakukan melalui tes dan wawancara. Berdasarkan hasil penelitian didapatkan bahwa: 1) Siswa Kemampuan Rendah (LAS) mengalami banyak variasi kesulitan pada seluruh tahapan dalam penyelesaian masalah menurut teori Polya; 2) Siswa Kemampuan Sedang (MAS) pada tahapan memahami masalah mengalami variasi kesulitan lebih sedikit dibandingkan dengan tiga tahap lainnya; 3) Siswa Kemampuan Tinggi (HAS) pada tahapan memahami masalah dan membuat rencana mengalami variasi kesulitan lebih sedikit dibandingkan dua tahapan lainnya. Selain berdasarkan teori Polya, variasi kesulitan lainnya yaitu kesulitan untuk mendefinisikan variabel, konstanta, dan koefisien secara tepat juga dialami oleh siswa.

Downloads

Download data is not yet available.

References

Anggraini, D., Yohanie, D. D., & Nurfahrudianto, A. (2024). Analisis kesulitan siswa dalam menyelesaikan soal sistem pertidaksamaan linear dua variabel menggunakan teori pemahaman SKEMP. Jurnal Ilmiah Pendidikan Citra Bakti, 11(1), 58–72. https://doi.org/10.38048/jipcb.v11i1.2060.

Ani, S. I., & Rosyidi, A. H. (2022). Merencanakan pemecahan masalah kontekstual: Siswa laki-laki vs siswa perempuan. MATHEdunesa, 11(1), 97–110. https://doi.org/10.26740/mathedunesa.v11n1.p97-110.

Astuti, P., Sari, N. K., & Wirawan, F. (2023). Kemampuan pemecahan masalah kontekstual siswa SMA kelas XI pada materi barisan dan deret. ANTHOR: Education and Learning Journal, 2(3), 396–401. https://doi.org/10.31004/anthor.v2i3.152.

Bowers, J., Anderson, M., & Beckhard, K. (2024). A mathematics educator walks into a physics class: Identifying math skills in students’ physics problem-solving practices. Journal for STEM Education Research, 7(3), 335–361. https://doi.org/10.1007/s41979-023-00105-w.

Buyung, M., Angkotasan, N., & Jalal, A. (2023). Kesulitan berpikir reflektif matematis siswa dalam menyelesaikan soal sistem pertidaksamaan linear dua variabel ditinjau dari gaya belajar. Jurnal Pendidikan Guru Matematika, 3(2), 148–157. https://doi.org/10.33387/jpgm.v3i2.6134.

Conway, J. (2004). How to solve it (Expanded princeton science library with a new foreword by John H.Conway). psl.princeton.edu Printed.

Daulay, K. R., & Ruhaimah, I. (2019). Polya’s theory to improve problem-solving skills. Journal of Physics: Conference Series, 1188, 1–7. https://doi.org/10.1088/1742-6596/1188/1/012070.

Engelbrecht, J., Borba, M. C., & Kaiser, G. (2023). Will we ever teach mathematics again in the way we used to before the pandemic? ZDM – Mathematics Education, 55(1), 1–16. https://doi.org/10.1007/s11858-022-01460-5.

Erni, R. (2021). Analysis of student errors in solving systems of inequalities with two variables problems based on newman. Jurnal Prinsip Pendidikan Matematika, 3(1), 34–41. https://doi.org/10.33578/prinsip.v3i1.78.

Kumalasari, A., Winarni, S., Rohati, Marlina, & Aulia, M. G. (2022). Analysis of mathematical problem-solving ability of assimilator students: Kolb learning style. Hipotenusa : Journal of Mathematical Society, 4(2), 120–133.

Nurhayati, Y., & Ratnaningsih, N. (2023). Analisis kesalahan konsep siswa pada materi sistem pertidaksamaan linear dua variabel. Primatika : Jurnal Pendidikan Matematika, 12(2), 153–164. https://doi.org/10.30872/primatika.v12i2.1754.

Rojas, M., Nussbaum, M., Chiuminatto, P., Guerrero, O., Greiff, S., Krieger, F., & Westhuizen, L. V. D. (2021). Assessing collaborative problem-solving skills among elementary school students. Computers & Education, 175, 104313. https://doi.org/10.1016/j.compedu.2021.104313.

Rosyada, M. I., & Wibowo, S. E. (2023). Analysis of mathematics problem-solving ability based on ideal problem-solving steps given student learning styles. AKSIOMA: Jurnal Program Studi Pendidikan Matematika, 12(1), 1332–1343. https://doi.org/10.24127/ajpm.v12i1.6880.

Santos-Trigo, M. (2024). Problem solving in mathematics education: Tracing its foundations and current research-practice trends. ZDM – Mathematics Education, 56(2), 211–222. https://doi.org/10.1007/s11858-024-01578-8.

Schoenfeld, A. H. (1992). Learning to think mathematically: Problem solving, metacognition, and sense making in mathematics. Handbook of Research on Mathematics Teaching and Learning, 334–370.

Septian, A., Widodo, S. A., Afifah, I. N., Nisa, D. Z., Putri, N. P. K., Tyas, M. D., Nisa, R. H., & Andriani, A. (2022). Mathematical problem-solving ability in Indonesia. Journal of Instructional Mathematics, 3(1), 16–25. https://doi.org/10.37640/jim.v3i1.1223.

Sopudin, & Aminah, N. (2024). Analisis kemampuan pemecahan masalah siswa pada materi sistem pertidaksamaan linier dua variabel. SIGMA (Suara Intelektual Gaya Matematika), 9(2), 103–110. https://doi.org/10.53712/sigma.v9i2.2039.

Stewart, E., & Ball, L. (2023). The tension between allowing student struggle and providing support when teaching problem-solving in primary school mathematics. Canadian Journal of Science, Mathematics and Technology Education, 23(4), 791–817. https://doi.org/10.1007/s42330-024-00309-1.

Wang, H. H. (2020). Examining patterns in teacher-student classroom conversations during STEM lessons. Journal for STEM Education Research, 3(1), 69–90. https://doi.org/10.1007/s41979-019-00022-x.

Downloads

Published

2025-06-26

How to Cite

Junianti, I. W., Subanji, & Susanto, H. (2025). Variation of Vocational Students’ Difficulties in Solving System Linear Inequality Problem Based on Polya’s Theory. MaPan : Jurnal Matematika Dan Pembelajaran, 13(1), 85–102. https://doi.org/10.24252/mapan.2025v13n1a5

Issue

Section

Vol. 13 No. 1

Similar Articles

<< < 

You may also start an advanced similarity search for this article.