Estimasi Kejadian Covid-19 Secara Real Time menggunakan R Programming

Adnan Sauddin, Try Azisah Nurma, Khalilah Nurfadilah

Abstract


Pada artikel ini menguraikan Langkah-langkah estimasi kejadian covid-19 di Indonesia khusus wilayan Sulawesi selatan secara real time menggunakan Bahasa R.


Keywords


R programming, Covid-19, distribusi poisson, estimasi parameter, likelihood

Full Text:

PDF

References


Bettencourt LMA, Ribeiro RM (2008) Real Time Bayesian Estimation of the Epidemic Potential of Emerging Infectious Diseases. PLoS ONE 3(5): e2185. https://doi.org/10.1371/journal.pone.0002185

Mwangi TW, Fegan G, Williams TN, Kinyanjui SM, Snow RW, Marsh K (2008) Evidence for Over-Dispersion in the Distribution of Clinical Malaria Episodes in Children. PLoS ONE 3(5): e2196. https://doi.org/10.1371/journal.pone.0002196

Haign John, (2002) Probability Models. Springer. London.

David J. Olive, (2014). Statistical Teory and Inferences. Springer. London.

Murray Logan,(2010) Biostatistical Design and Analysis Using R, John Wiley & Sons, Inc. New York.

Gergely Daróczi ,(2015)Mastering Data Analysis with R. Packt Publishing. Birmingham, UK.

Data Covid-19 Indonesia. https://prod-hub-indexer.s3.amazonaws.com/files/685be21cd0034247b5ceeac996d947fe/0/full/4326/685be21cd0034247b5ceeac996d947fe_0_full_4326.csv




DOI: https://doi.org/10.24252/msa.v8i1.14569

Refbacks

  • There are currently no refbacks.

Comments on this article

View all comments




Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Crossref Cited-by logo