Comparison of Cluster Analysis of Regency/City in South Sulawesi Province Based on Harvested Area and Rice Production Using the Average Linkage Method and Ward's Method

Authors

  • Nurul Jusmahilda Ismail Universitas Islam Negeri Alauddin Makassar
  • Try Azisah Nurman Universitas Islam Negeri Alauddin Makassar
  • Adiatma Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.24252/msa.v13i2.51488

Keywords:

Average Linkage Method, Ward’s Method, Euclidean, Squared Euclidean

Abstract

This study aims to further examine the two best methods, namely the Average Linkage Method and Ward's Method obtained from previous researchers by grouping 24 Regencies/Cities in South Sulawesi Province based on the variables of harvested area and rice production in 2023. In this study, Euclidean and Squared Euclidean distance measures were used. Furthermore, the minimum standard deviation value within the cluster (Sw), the maximum standard deviation between clusters (Sb), and the minimum ratio of Sw to Sb were observed to determine the most effective method. And also seen from the best Dunn Index value in determining the optimum number of clusters for each method. Based on the formation of the dendogram, the number of clusters tested was 2 to 6 clusters. The results of the study explain that of the two methods used, the method with the best performance is the Average Linkage method with the formation of an optimum cluster of 3 clusters, where cluster I has a low level of rice productivity. Cluster II has a high level of rice productivity. Cluster III has a fairly high (medium) level of rice productivity. And in the Ward’s method, the optimum number of clusters formed is two clusters, with Cluster I having a low level of rice productivity and Cluster II having a high level of rice productivity.

References

BPS, “Berita resmi statistik no. 17/03/73/th. xxviii, 1 maret 2024: Luas panen dan produksi padi provinsi di sulawesi

selatan 2023 (angka tetap),” 2024.

N. Lestari, T. A. Nurman, and K. Nurfadilah, “Produktivitas Padi di Provinsi Sulawesi Selatan Menggunakan Metode

Multidimensional Scaling (MDS),” msa, vol. 7, no. 1, p. 54, Aug. 2019.

I. Imasdiani, I. Purnamasari, and F. D. T. Amijaya, “Perbandingan Hasil Analisis Cluster Dengan Menggunakan Metode Average Linkage Dan Metode Ward,” J. Eksponensial, vol. 13, no. 1, p. 9, Jun. 2022.

A. D. Munthe, “PENERAPAN CLUSTERING TIME SERIES UNTUK MENGGEROMBOLKAN PROVINSI DI INDONESIA

BERDASARKAN NILAI PRODUKSI PADI,” JLS, vol. 2, no. 2, p. 11, May 2019.

R. Ramadani and A. Salma, “PERBANDINGAN KINERJA METODE AVERAGE LINKAGE DAN WARD DALAM

PENGELOMPOKAN TINGKAT KESEJAHTERAAN MASYARAKAT PROVINSI SUMATERA BARAT MENURUT

KABUPATEN/KOTA TAHUN 2021,” UNPJoMath, vol. 7, no. 3, p. 11, Sep. 2022.

N. Afira and A. W. Wijayanto, “Analisis Cluster dengan Metode Partitioning dan Hierarki pada Data Informasi Kemiskinan Provinsi di Indonesia Tahun 2019,” Komputika, vol. 10, no. 2, pp. 101–109, Sep. 2021.

M. Paramadina, S. Sudarmin, and M. K. Aidid, “Perbandingan Analisis Cluster Metode Average Linkage dan Metode Ward (Kasus: IPM Provinsi Sulawesi Selatan),” j. variansi, vol. 1, no. 2, p. 22, Jul. 2019.

A. Khoirunnisa’, F. A. S. Wibowo, and K. Kismiantini, “Perbandingan Analisis Agglomerative Hierarchical Clustering

Berdasarkan Indikator Pendidikan di Provinsi Jawa Barat,” PSPMM, vol. 7, Mar. 2023.

B. S. A. Arif, A. Rusgiono, and A. Hoyyi, “PENGELOMPOKAN PROVINSI-PROVINSI DI INDONESIA MENGGUNAKAN

METODE WARD (StudiKasus: Produksi Tanaman Pangan di Indonesia Tahun 2018),” Gaussian, vol. 9, no. 1, pp.

112–121, Feb. 2020.

Hasmira, Wahidah Alwi, and Khalilah Nurfadilah, “Penentuan Cluster Hirarki Optimum dalam Pengelompokan Kabupaten/Kota di Provinsi Sulawesi Selatan dengan Indikator Kemiskinan,” MSA, vol. 11, no. 1, pp. 93–102, Jun. 2023.

Musdalifah M. Ramly, S. Sudarmin, and B. Poerwanto, “Analisis Hierarchical Clustering Multiscale Bootstrap (Kasus:

Indikator Kemiskinan di Provinsi Sulawesi Selatan Tahun 2020),” j. variansi, vol. 4, no. 3, pp. 142–152, Dec. 2022.

A. N. Riadhoh, G. E. Puspita, I. Rafidah, and E. Widodo, “Pengelompokan Kabupaten/Kota Berdasarkan Produksi Tanaman Pangan Sumatera Utara Tahun 2020 Menggunakan Pengelompokan Hirarki Aglomeratif,” KUBIK, vol. 6, no. 2, pp. 61–70, Apr. 2022.

Y. Zahara, N. Afni Sinaga, R. Mahmuzah, and H. Hidayatsyah, “Analysis of Senior High Schools Quality in Banda Aceh

Using Cluster and Correspondence Analysis,” PJPM, vol. 16, no. 1, pp. 1–14, Jan. 2023.

A. Zahra, A. A. R. Fernandes, A. Achmad, and R. Fernandes, “Prediction of late installment payment based on integration modeling cluster analysis average and ward linkage with survival analysis (case study: House ownership loan bank x customers),” 2022.

R. Awaliah, “Analisis clustering untuk mengelompokkan tingkat kesejahteraan kabupaten berdasarkan sosial ekonomirumah tangga di wilayah provinsi sulawesi selatan.” 2018.

A. Saragih, D. C. Sukanda, and N. Eliyati, “CLUSTERIZATION OF REGION IN SOUTH SUMATERA BASED ON

COVID-19 CASE DATA,” BAREKENG: J. Math. & App., vol. 17, no. 3, pp. 1257–1264, Sep. 2023.

N. Ulinnuha and R. Veriani, “Analisis Cluster dalam Pengelompokan Provinsi di Indonesia Berdasarkan Variabel Penyakit Menular Menggunakan Metode Complete Linkage, Average Linkage dan Ward,” InfoTekJar, vol. 5, no

Downloads

Published

2025-11-27

How to Cite

[1]
Nurul Jusmahilda Ismail, Try Azisah Nurman, and Adiatma, “Comparison of Cluster Analysis of Regency/City in South Sulawesi Province Based on Harvested Area and Rice Production Using the Average Linkage Method and Ward’s Method ”, MSA, vol. 13, no. 2, pp. 151–161, Nov. 2025.

Most read articles by the same author(s)

1 2 > >>