Bayesian Spatio-Temporal Conditional Autoregressive Modelling of Factors Affecting Pneumonia Cases in Indonesia
DOI:
https://doi.org/10.24252/msa.v13i2.56315Keywords:
Pneumonia, Bayesian Method, Spatio Temporal CARAbstract
The Bayesian Spatio-Temporal Conditional Autoregressive (BST CAR) method is a statistical approach used to analyze data with both spatial and temporal components. While the BST CAR model has been widely applied in various studies, no research has yet explored using the Localized BST CAR model for pneumonia cases in Indonesia. This study aims to identify and model the factors influencing pneumonia incidence in Indonesia using the Localized BST CAR framework. The data analyzed in this study consist of the number of pneumonia cases in Indonesia from 2018 to 2022, along with variables believed to affect the incidence. The findings indicate that the Localized BST CAR model with G=3 provides the best fit for modeling the relative risk of pneumonia cases in Indonesia. Key factors found to significantly influence pneumonia cases include the percentage of exclusively breastfed infants, the percentage of infants with complete basic immunization, and the percentage of the population living in poverty. Notably, the percentage of exclusively breastfed infants and the percentage of fully immunized infants were positively associated with pneumonia cases, while the percentage of the poor population had a negative effect
References
G. Grekousis, Spatial Analysis Methods and Practice. China: Cambridge University Press, 2020. doi: https://doi.org/10.1017/9781108614528.
Yuliana and D. R. S. Saputro, “Algoritme Least Angle Regression untuk Model Geographically Weighted Least Absolute Shrinkage and Selection Operator,” in Seminar Matematika dan Pendidikan Matematika UNY, Yogyakarta, Indonesia, 2017, pp. 139–144.
S. S. Rajak, S. Ismail, and Resmawan, “Metode Conditional Autoregressive dalam Analisis Penyebaran Kasus Penyakit Tuberculosis,” Jambura J. Probab. Stat., vol. 2, no. 1, pp. 28–34, 2021, doi: https://doi.org/10.34312/jjps.v2i1.9771.
V. De Oliveira, “Bayesian Analysis of Conditional Autoregressive Models,” Ann. Inst. Stat. Math., vol. 64, pp. 107–133, 2012, doi: https://doi.org/10.1007/s10463-010-0298-1.
Setiaji et al., Profil kesehatan indonesia. Jakarta: Kementerian Kesehatan Republik Indonesia, 2021.
I. Hadning, T. M. Andayani, D. Endarti, and R. Triasih, “Health-Related Quality of Life Among Children With Pneumonia in Indonesia Using the EuroQoL Descriptive System Value Set for Indonesia,” Value Heal. Reg Issues, vol. 24, no. 1, pp. 12–16, 2021, doi: 10.1016/j.vhri.2020.05.010.
W. H. Organization, “Pneumonia,” World Health Organization. [Online]. Available: https://www.who.int/news-room/fact-sheets/detail/pneumonia
V. A. Saputri and P. Purhadi, “Pemodelan Faktor – Faktor yang Mempengaruhi Kasus Pneumonia pada Balita di Provinsi Jawa Barat dengan Metode Geographically Weighted Generalized Poisson Regression,” Inferensi, vol. 5, no. 2, pp. 91–103, 2022, doi: 10.12962/j27213862.v5i2.12619.
D. Lee, A. Rushworth, and G. Napier, “Spatio-Temporal Areal Unit Modeling in R with Conditional Autoregressive Priors Using the CARBayesST Package,” J. Stat. Softw., vol. 84, no. 9, p. 39, 2018, doi: 10.18637/jss.v084.i09.
Z. T. Tessema, G. A. Tesema, S. Ahern, and A. Earnest, “Bayesian Spatio-Temporal Modelling of Child Anemia in Ethiopia using Conditional Autoregressive Model,” Sci. Rep., vol. 12, no. 20297, p. 11, 2022, doi: https://doi.org/10.1038/s41598-022-24475-0.
Sukarna, A. Kurnia, and K. Sadik, “Modeling and Mapping on Bayesian Spatio-Temporal CAR Localized for Poverty in Sulawesi Island, Indonesia,” in Proceedings of the 5th International Conference on Statistics, Mathematics, Teaching, and Research 2023 (ICSMTR 2023), 2023, pp. 185–197. doi: 10.2991/978-94-6463-332-0_21.
A. Aswi, S. Cramb, E. Duncan, W. Hu, G. White, and K. Mengersen, “Climate Variability and dengue Fever in Makassar, Indonesia: Bayesian Spatio-Temporal Modelling,” Spat. Spatiotemporal. Epidemiol., vol. 33, p. 8, 2020, doi: 10.1016/j.sste.2020.100335.
A. Aswi, S. Rahardiantoro, A. Kurnia, B. Sartono, and S. Car, “MethodsX Bayesian Spatio-Temporal Conditional Autoregressive Localized Modeling Techniques for Socioeconomic Factors and Stunting in Indonesia,” MethodsX, vol. 15, no. June, p. 103464, 2025, doi: 10.1016/j.mex.2025.103464.
I. Franch-Pardo, B. M. Napoletano, F. Rosete-Verges, and L. Billa, “Spatial analysis and GIS in the study of COVID-19. A review,” Sci Total Env., vol. 15, no. 739, p. 10, 2020, doi: 10.1016/j.scitotenv.2020.140033.
P. C. Latue and H. Rakuasa, “Analysis of Land Cover Change Due to Urban Growth in Central Ternate District, Ternate City using Cellular Automata-Markov Chain,” J. Appl. Geospatial Inf., vol. 7, no. 1, pp. 722–728, 2023, doi: https://doi.org/10.30871/jagi.v7i1.4653.
K. R. Rahmad Igarta and F. Handayani, “Analisis Spasial Sektor Pariwisata di Provinsi Kalimantan Selatan,” J. Borneo Adm., vol. 16, no. 1, pp. 81–100, 2020, doi: 10.24258/jba.v16i1.628.
S. Bi, S. Bie, X. Hu, and H. Zhang, “Analysis on the characteristics of spatio-temporal evolution and aggregation trend of early COVID-19 in mainland China,” Sci. Rep., vol. 12, no. 4380, p. 7, 2022, doi: https://doi.org/10.1038/s41598-022-08403-w.
A. Aswi and S. Sukarna, “Model Bayesian Spasial CAR Localised: Studi Kasus Demam Berdarah Dengue di Kota Makassar,” in Prosiding Seminar Nasional VARIANSI Tahun 2020, 2020, pp. 49–59.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
