Application of ST-DBSCAN Algorithm in Clustering Earthquake Points in Sulawesi Region
DOI:
https://doi.org/10.24252/msa.v13i2.61832Keywords:
Clustering, ST-DBSCAN, Earthquakes, Spatial-TemporalAbstract
Clustering is a method in data mining that aims to group data based on certain similarities or characteristics. One of the clustering methods or algorithms is the Spatial-Temporal Density-Based Spatial Clustering of Applications with Noise (ST-DBSCAN) algorithm. This algorithm was chosen because of its ability to analyse data based on spatial and temporal dimensions simultaneously, using the parameters of spatial distance (ε₁), temporal distance (ε₂), and minimum number of points (MinPts). This study aims to determine the results of the ST-DBSCAN algorithm in clustering earthquake points in the Sulawesi Region. The data analysed is secondary data obtained from the Meteorology, Climatology and Geophysics Agency (BMKG) for the period 2019-2023, covering 12109 earthquake points with magnitude ≥ 3 on the Richter scale. The results show that earthquake points in Sulawesi are concentrated in subduction zones and active faults. The most earthquake-prone areas include North Sulawesi and Gorontalo, which are affected by the subduction of the Pacific and Eurasian Plates. In addition, Central Sulawesi, West Sulawesi, South Sulawesi and Southeast Sulawesi are also at high risk due to the activity of the Palu-Koro Fault. Earthquake intensity around the Flores Sea and Banda Sea increases in 2021-2022 due to subduction of the Indo-Australian Plate. The optimal parameters for clustering varied every year during the study. The optimal parameters for clustering varied every year during the study period. This study provides new insights into seismic activity patterns in Sulawesi that can be utilised to support disaster mitigation and earthquake risk reduction policies.
References
N. H. Qothrunnada, R. Y. Utami, and S. A. Rizky, “Menganalisis bencana alam gempa bumi dalam perspektif Al-Quran,” J. Konf. Integr. Interkoneksi Islam dan Sains, vol. 4, pp. 257–260, 2022, [Online]. Available: https://ejournal.uin-suka.ac.id/saintek/kiiis/article/view/3225.
I. N. Setiawan, D. Krismawati, S. Pramana, and E. Tanur, “Klasterisasi Wilayah Rentan Bencana Alam Berupa Gerakan Tanah Dan Gempa Bumi Di Indonesia,” Semin. Nas. Off. Stat., vol. 2022, no. 1, pp. 669–676, 2022, doi: 10.34123/semnasoffstat.v2022i1.1538.
I. B. F. Arafat, M. A. Hariyadi, I. B. Santoso, and C. Crysdian, “Clustering Gempabumi di Wilayah Regional VII Menggunakan Pendekatan DBSCAN,” J. Teknol. Inf. dan Ilmu Komput., vol. 10, no. 4, pp. 823–830, 2023, doi: 10.25126/jtiik.20241046918.
N. E. Dwiyanti et al., “Analisi Hubungan Magnitudo Gempa Bumi Terhadap Hasil Frekuensi Dominan Pada Rangkaian Gempa Aceh 2004, Yogyakarta 2006, Palu dan Lombok 2018 Sebagai Upaya Mitigasi Bencana,” J. Meteorol. Klimatologi dan Geofis., vol. 7, no. 3, pp. 44–50, 2020, [Online]. Available: https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/203.
I. I. Alfiansyah, B. Rahmadhaniyah, N. Khikmah, F. Roshmiasih, and W. Praditya, “Kajian Indeks Bahaya Seismik Regional Menggunakan Data Seismik Pulau Sulawesi Tahun 1905-2005,” Pros. Semin. Nas. Fis. Festiv., vol. 01, no. 01, pp. 77–82, 2020, doi: 10.13057/ijap.v3i01.1210.
D. J. Manalu, R. Rahmawati, and T. Widiharih, “PENGELOMPOKAN TITIK GEMPA DI PULAU SULAWESI MENGGUNAKAN ALGORITMA ST-DBSCAN (Spatio Temporal-Density Based Spatial Clustering Application with Noise),” J. Gaussian, vol. 10, no. 4, pp. 554–561, 2021, doi: 10.14710/j.gauss.v10i4.29499.
A. N. Fahira and R. Nooraeni, “Optimasi Parameter ST-DBSCAN dengan KNN dan Algoritma Genetika Studi Kasus: Data Bencana Alam di Pulau Jawa 2021,” J. Komputasi, vol. 11, no. 1, pp. 24–33, 2023, doi: 10.23960/komputasi.v11i1.3175.
A. Johar, A. Vatresia, and I. A. Donny, “Implementasi Metode Spatio-Temporal Clustering dengan Algoritma St-Dbscan Pada Titik Api Kebakaran Hutan Indonesia (2015-2020),” J. Rekursif, vol. 11, no. 1, pp. 1–9, 2023.
S. Harini, H. Fahmi, A. D. Mulyanto, and M. Khudzaifah, “The earthquake events and impacts mapping in Bali and Nusa Tenggara using a clustering method,” IOP Conf. Ser. Earth Environ. Sci., vol. 456, no. 1, 2020, doi: 10.1088/1755-1315/456/1/012087.
M. A. P. Saputri, D. Sunarya, M. A. P. Saputri, D. Sunarya, and I. Pendahuluan, “Analisis Perbandingan Energi Gempabumi Utama Dengan Gempabumi Susulan ( Studi Kasus Rangkaian Gempabumi Cianjur 21 November 2022 ) Energy Comparison Analysis of the Main Earthquake and Aftershocks ( Case Study of the Cianjur Earthquake Series on November ,” vol. 4, no. 3, pp. 1–7, 2023.
Irwan, A. Y. Hashari, H. Ihsan, and A. Zaky, “Penggunaan Self Organizing Map Dalam Pengelompokan Tingkat Kesejahteraan Masyarakat,” Jambura J. Probab. Stat., vol. 1, no. 2, pp. 57–68, 2020, doi: 10.34312/jjps.v1i2.7266.
V. Satopää, J. Albrecht, D. Irwin, and B. Raghavan, “Finding a ‘kneedle’ in a haystack: Detecting knee points in system behavior,” Proc. - Int. Conf. Distrib. Comput. Syst., pp. 166–171, 2011, doi: 10.1109/ICDCSW.2011.20.
H. Anton and C. Rorres, Elementary Linear Algebra, vol. 11, no. 1. 2014.
R. Handoyo, R. R. M, and S. M. Nasution, “| JSM STMIK Mikroskil 73,” Perbandingan Metod. Clust. Menggunakan Metod. Single Link. dan K-Means Pada Pengelompokkan Dok., vol. 15, no. 2, pp. 73–82, 2014.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal MSA ( Matematika dan Statistika serta Aplikasinya)

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
