Implementation of Negative Binomial Regression to Address Overdispersion in the Analysis of Unemployment Determinants in Sulawesi, 2023

Authors

  • Erna Universitas Islam Negeri Alauddin Makassar
  • Ermawati Universitas Islam Negeri Alauddin Makassar
  • Wahidah Alwi Universitas Islam Negeri Alauddin Makassar
  • Sri Dewi Anugrawati Universitas Islam Negeri Alauddin Makassar

DOI:

https://doi.org/10.24252/msa.v13i2.61738

Keywords:

Unemployment, Overdispersion, Negative Binomial Regression

Abstract

This study focuses on the implementation of negative binomial regression as a solution to overcome the problem of overdispersion in the analysis of determinants of unemployment on the island of Sulawesi in 2023. Unemployment is not only viewed as a statistical phenomenon or economic issue, but also as an important indicator that reflects social welfare and the success of development in a region. Sulawesi Island, with its growth in the agricultural and industrial sectors, faces serious challenges in reducing unemployment rates, which have the potential to cause regional disparities if not addressed appropriately. This study aims to develop an appropriate negative binomial regression model to overcome overdispersion and identify the main factors that influence the unemployment rate. The method used is negative binomial regression analysis of district/city unemployment data in Sulawesi Island, which is discrete and shows symptoms of overdispersion. With significant variables including population size, Human Development Index (HDI), and the number of job placement or fulfillment services. These three factors have been proven to have a significant effect on the number of unemployed people in Sulawesi Island in 2023.

References

H. Hidayati, H. Nainggolan, R. Erdiansyah, W. Ratri, A. Gorda, N. Prastiwi, S. Kadiman, I. Adnyana, A. Siska, and others, “Ekonomi Sumber Daya Manusia,” 2022.

Rahmawati, “Faktor-faktor yang mempengaruhi pengangguran di provinsi sulawesi selatan tahun 2000–2014,” 2016.

U. Kurniawan, “Penaksiran dan pengujian hipotesis parameter model regresi binomial estimation parameters and testing hypotheses for the bivariate negative binomial regression model: Case study number of infant mortality and maternal,” 2015.

M. Fadil, “Mengatasi overdispersi menggunakan regresi binomial negatif dengan penaksir maksimum likelihood pada kasus demam berdarah di kota makassar,” Pharmacognosy Magazine, vol. 75, no. 17, pp. 399–405, 2021.

E. Hayat and A. S. ¨Ozden, “Estimating the number of unemployed months for individuals in turkey with the poisson and negative binomial regression models,” Y¨onetim ve Ekonomi Dergisi, vol. 30, no. 2, pp. 225–238, 2023.

Satriani, “Perbandingan model regresi binomial negatif dan generalized poisson untuk data jumlah kematian akibat demam berdarah dengue (dbd) di provinsi sulawesi selatan tahun 2020,” pp. 1–80, 2022.

J. M. Hilbe, Negative Binomial Regression, 2011, vol. 11, no. 1.

A. O. Halim and N. Imro’ah, “Negative binomial regression in overcoming overdispersion poverty data in kalimantan,” Jurnal Forum Analisis Statistik, vol. 4, no. 1, pp. 1–10, 2024.

V. M. Santi and Y. Rahayuningsih, “Negative binomial regression in overcoming overdispersion in extreme poverty data in indonesia,” Pattimura International Journal of Mathematics, vol. 2, no. 2, pp. 43–52, 2023.

A. Agresti, An Introduction to Categorical Data Analysis (2nd edn). Hoboken, New Jersey: John Wiley & Sons, Inc.,

2007.

N. L. Johnson, Univariate Discrete Distributions, 1992.

R. L. Steiner, “Three estimation methods for the negative binomial parameter k,” 1993.

Downloads

Published

2025-11-13

How to Cite

[1]
Erna, Ermawati, Wahidah Alwi, and Sri Dewi Anugrawati, “Implementation of Negative Binomial Regression to Address Overdispersion in the Analysis of Unemployment Determinants in Sulawesi, 2023”, MSA, vol. 13, no. 2, pp. 107–115, Nov. 2025.

Most read articles by the same author(s)

<< < 1 2 3 > >>